|
[1] Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: International Conference on Computer Vision and Pattern Recognition. Volume 1., IEEE (2001) 511 - 518. [2] R. P. Mahapatra, K. Vimal Kumar, G.K., Mahajan, R.: Ultra sonic sensor based blind spot accident prevention system. In: International Conference on Advanced Computer Theory and Engineering, IEEE (Dec. 2008) 992 - 995. [3] Chang, J., Cho, C.: Vision-based front vehicle detection and its distance estimation. In: International Conference on Systems, Man and Cybernetics. Volume 3., IEEE (Oct. 2006) 2063 - 2068. [4] C. H. Chen, T. Y. Chen, D.Y.H., Feng, K.W.: Front vehicle detection and distance estimation using single-lens video camera. In: International Conference on Robot, Vision and Signal Processing, IEEE (2015) 14 - 17. [5] Hsiao, P., Yeh, C.: A portable real-time lane departure warning system based on embedded calculating technique. In: 63rd Vehicular Technology Conference. Volume 6., IEEE (May. 2006) 2982 - 2986. [6] W.B Horng, C.Y Chen, Y.C., Fan, C.: Driver fatigue detection based on eye tracking and dynamk, template matching. In: International Conference on Networking, Sensing and Control. Volume 1., IEEE (Mar. 2004) 7 - 12. [7] Chang, J.Y., Cho, C.W.: Vision-based front vehicle detection and its distance estimation. In: International Conference on Systems, Man and Cybernetics, IEEE (2006) 2063 - 2068. [8] D. V. Thombre, J.H.N., Lekha, D.: Human detection and tracking using image segmentation and kalman filter. In: International Conference on Intelligent Agent and Multi-Agent Systems, IAMA (2009) 1 - 5. [9] et al., B.F.L.: Integrating appearance and edge features for sedan vehicle detection in the blind-spot area. In: International Conference on Intelligent Transportation Systems. Volume 13., IAMA (2012) 737 - 747. [10] Seunghwan Baek, H.K., Boo, K.: Robust vehicle detection and tracking method for blind spot detection system by using vision sensors. In: World Conference on Complex Systems, WCCS (2014) 729 - 735. [11] Chen, C.T., Chen, Y.S.: Real-time approaching vehicle detection in blind-spot area. In: International IEEE Conference on Intelligent Transportation Systems, IEEE (2009) 1 - 6. [12] Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Journal of Computer and System Sciences. Volume 55., science direct (Aug. 1997) 119 139. [13] Ma, Y., Ding, X.: Robust real-time face detection based on cost-sensitive adaboost method. In: International Conference on Multimedia and Expo. Volume 2., IEEE (July 2003) II - 465 - 8. [14] J. M. Guo, C. C. Lin, C.H.C., Liu, Y.F.: Face gender recognition with half toning-based adaboost classifiers. In: International Conference on Circuits and Systems, IEEE (May 2013) 2497 - 2500. [15] Viola, P., Jones, M.J.: Robust real-time face detection. In: International Journal on Computer Vision. Volume 57., IEEE (May. 2004) 137 - 154. [16] Dai, S., Zhang, Y.: Adaboost in region-based image retrieval. In: International Conference on Acoustics, Speech, and Signal Processing. Volume 3., IEEE (May 2014) III - 429-32. [17] C. Huang, B. Wu, H.A., Lao, S.: Omni-directional face detection based on real adaboost. In: International Conference on Image Processing. Volume 1., IEEE (Oct. 2004) 593 596. [18] S. Yousefi, X.W.C., Champagne, B.: Mobile localization in non-line-of-sight using constrained square-root unscented kalman filter. In: International Conference on Vehicular Technology. Volume 64., IEEE (May 2015) 2071 - 2083. [19] Chris van Hinsbergen, T.S.: Localized extended kalman filter for scalable real-time traffic state estimation. In: International Conference on Computer Vision and Pattern Recognition. Volume 13., IEEE (2012) 385 - 394. [20] C. Luo, S. I. McClean, G.P., Teacy, L.: Uav position estimation and collision avoidance using the extended kalman filter. In: International Conference on Computer Vision and Pattern Recognition. Volume 62., IEEE (July 2013) 2749 - 2749. [21] C.Antoniou, M.B.A., Koutsopoulos, H.N.: Nonlinear kalman filtering algorithms for on-line calibration of dynamic traffic assignment models. In: International Conference on Transactions on Intelligent Transportation Systems. Volume 8., IEEE (Dec. 2007) 661 - 670. [22] Gustafsson, F., Hendeby, G.: Some relations between extended and unscented kalman filters. In: International Conference on Transactions on Signal Processing. Volume 60., IEEE (Feb. 2012) 545 - 555. [23] Y. Hao, Z. Xiong, F.S., Wang, X.: Comparison of unscented kalman filters. In: International Conference on Mechatronics and Automation, IEEE (2007) 895 - 899. [24] S. Hong, C. Lee, F.B., Hedrick, J.K.: A novel approach for vehicle inertial parameter identification using a dual kalman filter. In: International Conference on Intelligent Transportation Systems. Volume 16., IEEE (Feb. 2015) 151 - 161. [25] R. Aguilar-Ponce, J. L. Tecpanecatl-Xihuitl, A.K., Bayoumi, M.: Pixel-level image fusion scheme based on linear algebra. In: International Conference on Circuits and Systems, IEEE (May 2007) 2658 - 2661. [26] W. van der Mark, D. Fontijne, L.D., Groen, F.C.A.: Vehicle ego-motion estimation with geometric algebra. In: IEEE Transactions on Intelligent Vehicle Symposium. Volume 1., IEEE (2002) 58 - 63. [27] J. C. Nascimento, M.A.T.F., Marques, J.S.: Trajectory classification using switched dynamical hidden markov models. In: IEEE Transactions on Image Processing. Volume 19., IEEE (May 2010) 1338 - 1348. [28] Pruteanu-Malinici, I., Carin, L.: Infinite hidden Markov models for unusual-event detection in video. In: IEEE Transactions on Image Processing. Volume 17., IEEE (May 2008) 811 - 822. [29] Ichir, M.M., Mohammad-Djafari, A.: Hidden Markov models for wavelet-based blind source separation. In: IEEE Transactions on Image Processing. Volume 15., IEEE (July 2006) 1887 - 1899. [30] F. Destrempes, M.M., Angers, J.F.: A stochastic method for Bayesian estimation of hidden markov random field models with application to a color model. In: IEEE Transactions on Image Processing. Volume 14., IEEE (Aug. 2005) 1096 - 1108. [31] Chris van Hinsbergen, T.S.: An introduction to hidden Markov models. In: IEEE ASSP Magazine. Volume 3., IEEE (1986) 4 - 16. [32] Barnich, O., Droogenbroeck, M.V.: Vibe: A universal background subtraction algorithm for video sequences. In: IEEE Transactions on Signal Processing Society. Volume 20., IEEE (June 2011) 1709 - 1724. [33] Tsai, D.M., Lai, S.C.: Independent component analysis-based background subtraction for indoor surveillance. In: IEEE Transactions on Image Processing. Volume 18., IEEE (Jan. 2009) 158 - 167. [34] Intachak, T., Kaewapichai, W.: Real-time illumination feedback system for adaptive background subtraction working in traffic video monitoring. In: IEEE Transactions on Intelligent Signal Processing and Communications Systems, IEEE (2011) 1 - 5. [35] Zhang, J., Ma, D.: Nonlinear prediction for Gaussian mixture image models. In: IEEE Transactions on Image Processing. Volume 13., IEEE (June 2004) 836 - 847. [36] Hammond, D.K., Simoncelli, E.P.: Image modeling and denoising with orientation-adapted Gaussian scale mixtures. In: IEEE Transactions on Image Processing. Volume 17., IEEE (Nov. 2008) 2089 – 2101. [37] D. Mukherjee, Q.M.J.W., Nguyen, T.M.: Multiresolution based Gaussian mixture model for background suppression. In: IEEE Transactions on Image Processing. Volume 22., IEEE (Dev. 2013) 5022 - 5035. [38] Lee, D., Kim, J.: Object detection using directional integral image. In: Ubiquitous Robots and Ambient Intelligence, 2013 10th International Conference on, URAI (2013) 285 - 286. [39] Y. D. Hoseini, S.M.S., Sadri, S.: A novel cmos image sensor for high speed parallel integral image computation. In: 2013 21st Iranian Conference on Electrical Engineering. Volume 1., ICEE (2013) 1 - 6. [40] Cheng, W.C., Jhan, D.M.: A cascade classifier using adaboost algorithm and support vector machine for pedestrian detection. In: IEEE Transactions on Systems, Man, and Cybernetics, IEEE (2011) 1430 - 1435. [41] Z. Zhang, B. Zhang, K.Z., Yang, W.: A network shaped cascade classifier based on potential functions for pedestrian detection. In: IEEE Transactions on Guidance, Navigation and Control Conference, IEEE (2014) 2321 - 2325. [42] L. Yang, P. Luo, C.C.L., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: International Conference on Computer Vision and Pattern Recogntion, CVPR (2015) 3973 - 3981. [43] C. Luo, S. I. McClean, G.P., Teacy, L.: Uav position estimation and collision avoidance using the extended kalman filter. In: International Conference on Computer Vision and Pattern Recognition. Volume 62., IEEE (July 2013) 2749 - 2749.
|