|
[1] R. C. Miller, and W. A. Nordland, "Absolute signs of second harmonic generation coefficients of piezoelectric crystals, " Phys. Rev. B, Vol. 2, pp. 4896–4902, 1970. [2] G. L. Tangonan, M. K. Barnoski, J. F. Lotspeich, and A. Lee, "High optical power capabilities of Ti-diffused LiTaO3 waveguide modulator structures," Appl. Phys. Lett. Vol. 30, pp. 238–239, 1977. [3] http://www.crystaltechnology.com/docs/LNopt.pdf [4] 光電概論 孫慶成 編著 全華出版 [5] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett., Vol. 9, pp. 72–74, 1966. [6] M. Sato, K. Seino, K. Onodera, and N. Tanno, "Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography," Optics Communications, Vol. 184, pp. 95–104, 2000. [7] D. S. Kim, W. S. Yang, W. K. Kim, H. Y. Lee, H. Kim, and D. H. Yoon, "DC-drift suppression of Ti:LiNbO3 waveguide chip by minimizing the contamination in oxide buffer layer," Journal of Crystal Growth, Vol. 288, pp. 188–191, 2006. [8] P. Günter, and J. P. Huignard (eds.), "Photorefractive meterials and their applications I and II," Vol. 61, 62 Springer, Heidelberg, 1988, 1989. [9] R. Sommerfeldt, L. Holtman, and E. Krätzig, " The lightinduced charge transport in LiNbO3:Mg, Fe crystals," Ferroelectrics, Vol. 92, pp. 219, 1989. [10] T. Volk, N. Rubinina, and M. Wöehlecke, "Optical-damage-resistant impurities in lithium niobate," J. Opt. Soc. Am. B 11, pp. 1681, 1994. [11] G. Y. Zhang, J. J. Xu, Q. Sun, S. Liu, G. Q. Zhang, Q. I. Fang, and C. L. Ma, "Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe,Mg crystals", in photorefractive fiber and crystal devices: materials, Optical Properties, and Applications, Francis T. S. Yu, Editors, Proc. of SPIE, Vol. 2529, pp. 14–17, 1995. [12] D. S. Zhu, J. J. Xu, H. J. Qiao, W. Li, Y. L. Shi, F. Gao, Z. H. Wang, B. Fu, and G. Q Zhang, "Temperature dependence of photorefractive effect in reduced near-stoichiometric LiNbO3 crystal," Optics Communications, Vol. 272, pp. 391–394, 2007. [13] R. A. Becker, "”Thermal fixing” of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett., Vol. 45, pp. 121–123 1984 [14] R. A. Becker, "Comparison of guided-wave interferometric modulators fabricated on LiNbO3 via Ti indiffusion and proton exchange," Appl. Phys. Lett., Vol. 43, pp. 131, 1983. [15] T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett., Vol. 18, no. 5, pp. 346–348, 1993. [16] O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neugaonkar, " Comparison of photorefractive damage effect in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488nm wavelength, " Appl. Phys. Lett., Vol. 71, no. 21, pp. 3051–3053, 1997. [17] T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, "Optical-damageresistant LiNbO3:Zn crystal," Opt. Lett., Vol. 15, pp. 996–998, 1990. [18] Y. F. Kong, J. K. Wen, and H. F. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett., Vol. 66, pp. 280–281, 1995.
[19] J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, "Increased optical damage resistance in Sc2O3-doped LiNbO3," Appl. Phys. Lett., Vol. 61, pp. 2156–2158, 1992. [20] L. A. Sun, J. Wang, Q. A. Lv, B. Q. Liu, F. Y. Guo, R. Wang, W. Cai, Y. H. Xu, and L. C. Zhao, "Defect structure and optical damage resistance of In:Mg:Fe:LiNbO3 crystals with various Li/Nb ratios, "Journal of Crystal Growth, Vol. 297, pp. 199–203, 2006. [21] Y. X. Fan, H. T. Li, and L. C. Zhao, "Investigation on structure and photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals with various [Li]/[Nb] ratios," Optical Materials, Vol. 30, pp.492–496, 2007. [22] Z. P. Xu, S. W. Xu, J. A. Zhang, X. R. Liu, and Y. H. Xu, "Growth and photorefractive properties of In:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios," Journal of Crystal Growth, Vol. 280, pp. 227–233, 2005. [23] S. M. Kostritskii, P. Bourson, R. Mouras, and M. D. Fontana, "Optical fatigue of undoped lithium niobate crystals caused by irreversible photorefractive damage at high-intensity illumination," Optical Materials, Vol. 29, pp. 732–737, 2007. [24] M. Levesque, and P. Tremblay, "A novel technique to measure the dynamic response of an optical phase modulator," IEEE Transaction on Instrumentation and Measurement, Vol. 44, No. 5, 1995. [25] M. W. Wang, F. H. Tsai, and Y. F. Chao, "In situ calibration technique forphotoelastic modulator in ellipsometry," Thin Solid Films, Vol. 455-456, pp. 78–83, 2004. [26] C. F. Lo, Z. Peng, and L. L Cai, "Surface normal guided method for two-dimensional phase unwrapping," Optik, Vol. 113, No. 10, pp. 439–447, 2002. [27] F. Su, S. Yi, and K. S. Chian, "A simple method to unwrap the geometrically discontinuous phase map and Its application in the measurement of IC package, " Optics and Lasers in Engineering, Vol. 41, pp. 463–473, 2004. [28] N. Warnasooriya, and M. K. Kim, "LED-based multi-wavelength phase imaging interference microscopy, " OPTICS EXPRESS, Vol. 15, No. 15, pp. 9239–9247, 2007. [29] R. C. Twu, H. Y. Hong, and H. H. Lee, "An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators," OPTICS EXPRESS, Vol. 16, No. 6, pp. 4366–4347, 2008. [30] L. Nougaret, P. Combette, R. Arinero, J. Podlecki, and Frédérique Pascal-Delannoy, "Development of ruthenium dioxide electrodes for pyroelectric devices based on lithium tantalate thin films," Thin Solid Films, Vol. 515, pp. 3971–3977, 2007. [31] M. Iijima, G. H. Shen, Y. Takahashi, E. Fukada, A. Tanaka, and S. Sakata, "Characteristics of pyroelectric sensors of polyurea films prepared by vapor deposition polymerization," Thin Solid Films, Vol. 272, Issue 1, pp. 157–160, 1996. [32] J. S. Ko, W. G. Liu, and W. G. Zhu, "Substrate effect on the properties of the pyroelectric thin file IR detectors," Sensor and Actuators A 93, pp. 117–122, 2001. [33] J. A. Geuther, and Y. Danon, "Applications of pyroelectric particle accelerators," Nuclear Instruments and Methods in Physics Research B 261, pp. 110–113, 2007.
|