何瑞麟、陸汝斌、江漢光,三軍總醫院精神科情感型精神病住院病患比率改變之研究,Journal of Medical Sciences,6(4),327-332,1986。
吳欣怡,第二型雙極症與第二型雙極症共病焦慮症在神經心理功能上的表現,國立成功大學行為醫學研究所,碩士論文,2011。吳珮華,利用穩定表現型擴充SNP以找出影響阿茲海默症的最佳基因組合,國立交通大學統計學研究所,碩士論文,2011。金如鋒、夏昭林,病例對照設計為基礎的候選基因關聯研究中交互作用的統計方法進展,復旦學報(醫學版),38(3),265-270,2011。
姚俊杰、駱家偉,隨機森林方法在致病SNPs檢測中的應用,世界科技研究與發展,34(4),613-616,2012。
凃欣、石立松、汪樊、王擎,全基因組關聯分析的進展與反思,生理科學進展,41(2),87-94,2010。
孫玉琳、趙曉航,複雜疾病基因定位策略與腫瘤易感基因鑑定,生物化學與生物理進展,32(9),803-810,2005。
張安平、張學軍、朱文元,疾病相關基因定位的全基因組掃描策略與方法,疾病控制雜誌,5(2),135-138,2001。
張雁明、邢國芳、劉美桃、劉曉東、韓淵懷,全基因組關聯分析:基因組學研究的機遇與挑戰,生物技術通報,6(1),1-6,2013。
陸汝斌、張芸瑄、李聖玉、陳秀蘭,精神醫學診斷之變遷,The Journal of Nursing,61(1),26-31,2014。
許浩彰,建立真核生物體學資料庫分析系統,臺北醫學大學醫學資訊研究所,碩士論文,2007。許謙文,探討丙戊酸調節突觸興奮性中星狀神經膠細胞所扮演之角色,國立成功大學藥理學研究所,碩士論文,2008。陳惠君、吳羿諠、許民憲、高靖雯、陳秀蘭、陸汝斌,第一型與第二型雙極症臨床表徵及生活品質之比較,Journal of Evidence-Based Nursing,4(4),307-317,2008。
郭珊珊,全基因組關聯研究所發現之第2型糖尿病基因的再驗證研究,國立臺灣大學醫學院分子醫學研究所,碩士論文,2010。舒怡、張洪、章軍建,PI3K/Akt信號通路在神經系統疾病中的研究進展,醫學綜述,17(18),2732-2735,2011。
曾俊樺、李家岩、李聖玉、郭柏秀、陸汝斌,資料探勘技術於全基因組關聯研究-以漢族雙極症疾患為例,Chinese Institute of Industrial Engineers (CIIE) Conference & Annual Meeting,2015。
詹蕙安,罕見變異關聯性分析的分類與介紹,國立交通大學統計學研究所,碩士論文,2013。葉家僖、黃耀廷,單核苷酸多態性之簡介與研究回顧,生物醫學,2(2),135-146,2009。
趙依妮、孫琪、胡鯤、楊先樂、阮記明、周愛玲,基於GABA A受體評估雙氟沙星對異育銀鲫的安全性,水生生物學報,39(3),598-603,2015。
羅旭紅、劉志芳、董長征,基因水平的關聯分析方法,遺傳HEREDITAS(Beijing),35(9),1065-1071,2013。
Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2010). Data quality control in genetic case-control association studies. Nature protocols, 5(9), 1564-1573.
Antonarakis, S. E., Chakravarti, A., Cohen, J. C., & Hardy, J. (2010). Mendelian disorders and multifactorial traits: the big divide or one for all? Nature Reviews Genetics, 11(5), 380-384.
Assareh, A., Volkert, L. G., & Li, J. (2012). Feature selections using AdaBoost: Application in gene-gene interaction detection. Paper presented at the Bioinformatics and Biomedicine Workshops (BIBMW), 2012 IEEE International Conference on.
Association, A. P. (2000). Diagnostic and statistical manual of mental disorders (DSM-IV-TR): American Psychiatric Pub.
Barnett, J. H., & Smoller, J. W. (2009). The genetics of bipolar disorder. Neuroscience, 164(1), 331-343.
Barrett, J. C., & Cardon, L. R. (2006). Evaluating coverage of genome-wide association studies. Nature genetics, 38(6), 659-662.
Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265.
Behan, A., Byrne, C., Dunn, M., Cagney, G., & Cotter, D. (2009). Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Molecular psychiatry, 14(6), 601-613.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289-300.
Berns, G. S., & Nemeroff, C. B. (2003). The neurobiology of bipolar disorder. Paper presented at the American Journal of Medical Genetics Part C: Seminars in Medical Genetics.
Calle, M. L., Urrea, V., Boulesteix, A.-L., & Malats, N. (2011). AUC-RF: A new strategy for genomic profiling with random forest. Human heredity, 72(2), 121-132.
Cantor, R. M., Lange, K., & Sinsheimer, J. S. (2010). Prioritizing GWAS results: a review of statistical methods and recommendations for their application. The American Journal of Human Genetics, 86(1), 6-22.
Chatterjee, S., & Hadi, A. S. (2015). Regression analysis by example: John Wiley & Sons.
Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323-329.
Chen, X., Wang, L., Hu, B., Guo, M., Barnard, J., & Zhu, X. (2010). Pathway‐based analysis for genome‐wide association studies using supervised principal components. Genetic epidemiology, 34(7), 716-724.
Chien, C.-F., Hsu, C.-Y., & Chen, P.-N. (2013). Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence. Flexible Services and Manufacturing Journal, 25(3), 367-388.
ConsensusPathDB-human,Available:http://consensuspathdb.org/ (Accessed by April 12, 2016)
D'Angelo, G. M., Rao, D., & Gu, C. C. (2009). Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies. Paper presented at the BMC proceedings.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
GenePipe VarioWatch:A high performance bioinformatics pipeline for large-scale
human genomic variation studies,Available:http://genepipe.ncgm.sinica.edu.tw/variowatch/main.do (Accessed by April 12, 2016)
Gibson, G. (2010). Hints of hidden heritability in GWAS. Nat Genet, 42(7), 558-560.
Harding, A. M. S., Kusama, N., Hattori, T., Gautam, M., & Benson, C. J. (2014). ASIC2 subunits facilitate expression at the cell surface and confer regulation by PSD-95. PloS one, 9(4), e93797.
Hastie, T. J., Tibshirani, R. J., & Friedman, J. H. (2011). The elements of statistical learning: data mining, inference, and prediction: Springer.
Holmans, P., Green, E. K., Pahwa, J. S., Ferreira, M. A., Purcell, S. M., Sklar, P., . . . Consortium, W. T. C.-C. (2009). Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. The American Journal of Human Genetics, 85(1), 13-24.
Horvath, S., Xu, X., & Laird, N. M. (2001). The family based association test method: strategies for studying general genotype–phenotype associations. European Journal of Human Genetics, 9(4).
Kamburov, A., Wierling, C., Lehrach, H., & Herwig, R. (2009). ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic acids research, 37(suppl 1), D623-D628.
Kim, Y., Suh, I., Kim, H., Han, C., Lim, C., Choi, S., & Licinio, J. (2002). The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Molecular psychiatry, 7(10), 1107-1114.
Laird, N. M., & Lange, C. (2010). The fundamentals of modern statistical genetics: Springer Science & Business Media.
Langan, C., & McDonald, C. (2009). Neurobiological trait abnormalities in bipolar disorder. Molecular psychiatry, 14(9), 833-846.
MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological methods, 4(1), 84.
Maeda, N. (2015). Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Frontiers in neuroscience, 9.
Mitropanopoulos, S. (2012). GWAS for Bipolar Disorder in a European Cohort with CNV Discovery. The University of Arizona.
Moore, J. H., Asselbergs, F. W., & Williams, S. M. (2010). Bioinformatics challenges for genome-wide association studies. Bioinformatics, 26(4), 445-455.
Myles, S., Davison, D., Barrett, J., Stoneking, M., & Timpson, N. (2008). Worldwide population differentiation at disease-associated SNPs. BMC medical genomics, 1(1), 1.
Perry, J. R., McCarthy, M. I., Hattersley, A. T., Zeggini, E., Weedon, M. N., Frayling, T. M., & Consortium, W. T. C. C. (2009). Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes, 58(6), 1463-1467.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., . . . Daly, M. J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575.
Schisterman, E. F., Perkins, N. J., Liu, A., & Bondell, H. (2005). Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology, 73-81.
Shastry, B. S. (2002). SNP alleles in human disease and evolution. Journal of human genetics, 47(11), 0561-0566.
Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing, 5(4), 13-22.
Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16), 9440-9445.
Tacq, J. J., & Tacq, J. (1997). Multivariate analysis techniques in social science research: From problem to analysis: Sage.
Thomson, D., Berk, M., Dodd, S., Rapado-Castro, M., Quirk, S. E., Ellegaard, P. K., . . . Dean, O. M. (2015). Tobacco Use in Bipolar Disorder. Clinical Psychopharmacology and Neuroscience, 13(1), 1.
Wang, H., Wang, C., Lv, B., & Pan, X. Improved Variable Importance Measure of Random Forest via Combining of Proximity Measure and Support Vector Machine for Stable Feature Selection⋆.
Wang, J., Duncan, D., Shi, Z., & Zhang, B. (2013). WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic acids research, 41(W1), W77-W83.
Wang, K., Li, M., & Bucan, M. (2007). Pathway-based approaches for analysis of genomewide association studies. The American Journal of Human Genetics, 81(6), 1278-1283.
Wang, K., Li, M., & Hakonarson, H. (2010). Analysing biological pathways in genome-wide association studies. Nature Reviews Genetics, 11(12), 843-854.
Wang, L., Jia, P., Wolfinger, R. D., Chen, X., & Zhao, Z. (2011). Gene set analysis of genome-wide association studies: methodological issues and perspectives. Genomics, 98(1), 1-8.
Wang, L.-y., & Fasulo, D. (2006). A Fast Boosting-Based Screening Method for Large-scale Association Study in Complex Traits with Genetic Heterogeneity. Paper presented at the Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE.
Wang, M., Chen, X., Zhang, M., Zhu, W., Cho, K., & Zhang, H. (2009). Detecting significant single-nucleotide polymorphisms in a rheumatoid arthritis study using random forests. Paper presented at the BMC proceedings.
WEB-based GEne SeT AnaLysis Toolkit:Translating gene lists into biological insights,Available:http://www.webgestalt.org/ (Accessed by April 12, 2016)
Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., & Lange, K. (2009). Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 25(6), 714-721.
Yang, C., Wan, X., Yang, Q., Xue, H., & Yu, W. (2010). Identifying main effects and epistatic interactions from large-scale SNP data via adaptive group Lasso. BMC bioinformatics, 11(1), 1.
Yeo, G. S. (2011). Where next for GWAS? Briefings in functional genomics, 10(2), 51-51.
Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115(5), 654-657.