|
網頁參考文獻
[1] 國家發展委員會(2014)。聯合國世界人口高齡化趨勢分析。線上檢索日期:2015年5月1號。網址:http://www.ndc.gov.tw/m1.aspx?sNo=0057397#.VLYjiyuUcnU. [2] 衛生福利部統計處(2014)。民國102年臺灣死因。線上檢索日期:2015年5月1號。網址: http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&;fod_list_no=5150. [3] 衛生福利部國民健康屬(2015)。高血壓罹患人數。線上檢索日期:2015年5月1號。網址: http://www.hpa.gov.tw/BHPNet/Web/News/News.aspx?No=201311070001. [4] CNA中央通訊社(2014)。白袍症。線上檢索日期:2015年5月1號。網址: http://www.cna.com.tw/news/firstnews/201403260482-1.aspx. [5] Mayo Clinic (2012). High blood pressure (hypertension), Get the most out of home blood pressure monitoring. Retrieved May 1, 2015 from the World Wide Web: http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/in-depth/high-blood-pressure/art-20047889. [6] 中華民國防高血壓協會(2011)。認識高血壓。線上檢索日期:2015年5月1號。網址: http://hypertension.org.tw/know.php. [7] 維基百科(2014)。血壓。線上檢索日期:2015年5月1號。網址: http://zh.wikipedia.org/wiki/%E8%A1%80%E5%A3%93. [8] AHA (2014). Understanding Blood Pressure Readings. Retrieved May 1, 2015 from the World Wide Web: http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp. [9] Mayo Clinic (2014). Low blood pressure (hypotension). Retrieved May 1, 2015 from the World Wide Web: http://www.mayoclinic.org/diseases-conditions/low-blood-pressure/basics/definition/con-20032298. [10] AHA (2014). Low Blood Pressure. Retrieved May 1, 2015 from the World Wide Web: http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Low-Blood-Pressure_UCM_301785_Article.jsp. [11] AHA (2014). What is High Blood Pressure? Retrieved May 1, 2015 from the World Wide Web: http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/What-is-High-Blood-Pressure_UCM_301759_Article.jsp. [12] AHA (2014). Understand Your Risk for High Blood Pressure. Retrieved May 1, 2015 from the World Wide Web: http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/UnderstandYourRiskforHighBloodPressure/Understand-Your-Risk-for-High-Blood-Pressure_UCM_002052_Article.jsp. [13] Mayo Clinic (2014). High blood pressure (hypertension). Retrieved May 1, 2015 from the World Wide Web: http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/basics/risk-factors/con-20019580. [14] 維基百科(2014)。血壓計。線上檢索日期:2015年5月1號。網址: http://zh.wikipedia.org/wiki/%E8%A1%80%E5%8E%8B%E8%AE%A1. [15] Mayo Clinic (2013). High blood pressure (hypertension). Retrieved May 1, 2015 from the World Wide Web: http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/expert-answers/blood-pressure/faq-20057853. [16] AHA (2011). Ambulatory monitoring reveals many patients have ‘white coat’ hypertension. Retrieved May 1, 2015 from the World Wide Web: http://newsroom.heart.org/news/1298. [17] Chih-Chung Chang &; Chih-Jen Lin (2014). LIBSVM. Retrieved May 1, 2015 from the World Wide Web: http://www.csie.ntu.edu.tw/~cjlin/libsvm. [18] MathWorks (2015). Genetic Algorithm Options. Retrieved May 1, 2015 from the World Wide Web: http://www.mathworks.com/help/gads/genetic-algorithm-options.html#f6633. [19] Google Play (2013)。手部影像血壓計。線上檢索日期:2015年5月1號。網址: https://play.google.com/store/apps/details?id=nctu.lab615.brian&;hl=zh_TW. [20] Google Play (2014)。累計。血壓(BP)監測器。線上檢索日期:2015年5月25號。網址: https://play.google.com/store/apps/details?id=ufone.bloodpressuremonitor.bpcalculator. [21] Google Play (2015)。臉部影像血壓計。線上檢索日期:2015年5月25號。網址: https://play.google.com/store/apps/details?id=camera.app.blood_pressure.
英文參考文獻
Stergiou, G. O., Baibas, N. M., Gantzarou, A. P., Skeva, I. I., Kalkana, C. B. Roussias, L. G., &; Mountokalakis, T. D. (2002). Reproducibility of home, ambulatory,and clinic blood pressure: implications for the design of trials for the assessment of antihypertensive drug efficacy. Am. J. Hypertens, vol. 15, pp. 101–104. Bobrie, G., Gene ́s N., Vaur, L., Clerson, P., Vaisse, B., Mallion, J.-M., &; Chatellier, G. (2001). Is “isolated home” hypertension as opposed to “isolated office” hypertension a sign of greater cardiovascular risk? Arch. Intern. Med, vol. 161, pp. 2205–2211. Zhang, J., &; Kesteloot, H. (1999). Anthropometric, lifestyle and metabolic determinants of resting heart rate. European Heart Journal, pp. 103–110. Valentini, M., &; Parati G. (2009). Variables influencing heart rate. Progress in Cardiovascular Diseases, vol. 52, Issue 1, pp. 11-19 Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York. Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. Lecture Notes in Computer Science, vol. 1398, pp. 137-142. Burges, Christopher J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining, &; Knowledge Discovery, vol. 2, Issue 2, pp. 121-167. Osuna, E., Freund, R. &; Girosi, F. (1997). Training support vector machines: an application to face detection. Computer Vision and Pattern Recognition, pp. 103-136. Vapnik, V., Golowich, S. E., &; Smola, A. (1997). Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Advance in neural information processing system, vol. 9, pp. 281-287. Smola, A. J. &; Scho ̈lkopf, B. (2004). A tutorial on Support Vector Regression. Statistics and Computing, vol. 14, pp. 199-222. Wu, C. H., Ho, J. M. &; Lee, D. T. (2004). Travel-Time Prediction with Support Vector Regression. IEEE Trans. Intell.Transport. Syst, vol. 5, no. 4. Yu, P. S., Chen, S. T. &; Chang, F. I. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, vol. 328, Issues 3-4, pp. 704-716. Elattar, E. E. (2010). Electric Load Forecasting Based on Locally Weighted Support Vector Regression. IEEE Systems, Man, and Cybernetics Society, vol. 40, Issue 4, pp. 438-447. Huang, j. X., Hung, J. C. (2014). Forecasting Stock Market Indices Using RVC-SVR. Advanced Approaches to Intelligent Information and Database Systems, vol. 551, pp. 89-96. Chen, J. Q., Xue, X. P., Ha, M. g., Yu, D. R. &; Ma, L. T. (2014). Support vector regression method for wind speed prediction incorporating probability prior knowledge. Mathematical Problems in Engineering, vol. 2014 (2014), Article ID 410489, 10 pages. Jain, R. K., Smith, K. M., Culligan, P. J. &; Taylor, J. E. (2014). Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Applied Energy, vol. 123, pp. 168-178. Chen, K. Y. &; Wang, C. H. (2005). Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management, vol. 28, Issue 1, February 2007, pp. 215-226. Braga, P. L., Adriano L. I. Oliveira &; Silvio R. L. Metra (2008). A DA-based feature selection and parameters optimization for support vector regression applied to software effort estimation. Proceedings of the 2008 ACM symposium on Applied computing, pp. 1788-1792. Li, X. M., Ding, L. X., Li, Y., Xu, G. &; Li, J. B. (2010). Hybrid Genetic Algorithm and Support Vector Regression in Cooling Load Prediction. Knowledge Discovery and Data Mining, pp. 527-531. Zhao, M. Y., Fu, C., Ji, L. P., Tang, K. &; Zhou, M. T. (2011). Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications, vol. 38, Issue 5, pp. 5197–5204. Yuan, F. C. (2012). Parameters Optimization Using Genetic Algorithms in Support Vector Regression for Sales Volume Forecasting. Applied Mathematics, Vol. 3, No. 10A, pp. 1480-1486. Guo, M. L., Li, D. J., Du, C. B., Jia, Z. H., Qin, X. Z., Chen, L., Sheng, L., &; Li, H. (2012). Prediction of the Busy Traffic in Holidays Based on GA-SVR. Advances in Computer Science and Information Engineering, vol. 2, pp. 557-582. Kalteh, A. M. (2014). Wavelet Genetic Algorithm-Support Vector Regression (Wavelet GA-SVR) for Monthly Flow Forecasting. Water Resources Management, vol. 29, Issue 4, pp. 1283-1293. Vaseghi, S. V. (2000). Advanced Digital Signal Processing and Noise Reduction, Impulsive noise (pp. 355-377). New York: Wiley.
|