|
Bibliography [1] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau. Sentiment analysis of twitter data. In Proceedings of the Workshop on Languages in Social Media, pages 30–38. Association for Computational Linguistics, 2011. [2] A. Aw, M. Zhang, J. Xiao, and J. Su. A phrase-based statistical model for sms text normalization. In Proceedings of the COLING/ACL on Main conference poster ses- sions, pages 33–40. Association for Computational Linguistics, 2006. [3] S.Bird,E.Klein,andE.Loper.NaturalLanguageProcessingwithPython.O’Reilly Media, 2009. [4] M.Choudhury,R.Saraf,V.Jain,A.Mukherjee,S.Sarkar,andA.Basu.Investigation and modeling of the structure of texting language. International Journal of Document Analysis and Recognition (IJDAR), 10(3-4):157–174, 2007. [5] E. Clark and K. Araki. Text normalization in social media: progress, problems and applications for a pre-processing system of casual english. Procedia-Social and Be- havioral Sciences, 27:2–11, 2011. [6] P.CookandS.Stevenson.Anunsupervisedmodelfortextmessagenormalization.In Proceedings of the Workshop on Computational Approaches to Linguistic Creativity, pages 71–78. Association for Computational Linguistics, 2009. [7] D. Crystal. Texting. ELT journal, 62(1):77–83, 2008. 41 [8] S. Dow, A. Kulkarni, S. Klemmer, and B. Hartmann. Shepherding the crowd yields better work. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pages 1013–1022. ACM, 2012. [9] S.Gouws,D.Metzler,C.Cai,andE.Hovy.Contextualbearingonlinguisticvariation in social media. In Proceedings of the Workshop on Languages in Social Media, pages 20–29. Association for Computational Linguistics, 2011. [10] M. Kaufmann and J. Kalita. Syntactic normalization of twitter messages. In Inter- national conference on natural language processing, Kharagpur, India, 2010. [11] C. Kobus, F. Yvon, and G. Damnati. Normalizing sms: are two metaphors better thanone? InProceedingsofthe22ndInternationalConferenceonComputational Linguistics-Volume 1, pages 441–448. Association for Computational Linguistics, 2008. [12] E. Kouloumpis, T. Wilson, and J. Moore. Twitter sentiment analysis: The good the bad and the omg! ICWSM, 11:538–541, 2011. [13] E.LawandL.VonAhn.Input-agreement:anewmechanismforcollectingdatausing human computation games. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1197–1206. ACM, 2009. [14] G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995. [15] C.-C.MusatThisone,A.Ghasemi,andB.Faltings.Sentimentanalysisusinganovel human computation game. In Proceedings of the 3rd Workshop on the People’s Web Meets NLP: Collaboratively Constructed Semantic Resources and their Applications to NLP, pages 1–9. Association for Computational Linguistics, 2012. [16] O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider, and N. A. Smith. Improved part-of-speech tagging for online conversational text with word clusters. In Proceedings of NAACL-HLT, pages 380–390, 2013. 42 [17] A. J. Quinn and B. B. Bederson. Human computation: a survey and taxonomy of a growing field. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1403–1412. ACM, 2011. [18] K. Roschke. The text generation: Is English the next dead language? PhD thesis, Master’s thesis, Arizona State University, Tempe, AZ). Retrieved from http://mwtc. composing. org/grad/projects/roschke. pdf, 2008. [19] J. Ross, L. Irani, M. Silberman, A. Zaldivar, and B. Tomlinson. Who are the crowd- workers?: shifting demographics in mechanical turk. In CHI’10 Extended Abstracts on Human Factors in Computing Systems, pages 2863–2872. ACM, 2010. [20] N. Seemakurty, J. Chu, L. Von Ahn, and A. Tomasic. Word sense disambiguation via human computation. In Proceedings of the acm sigkdd workshop on human computation, pages 60–63. ACM, 2010. [21] L. Von Ahn and L. Dabbish. Designing games with a purpose. Communications of the ACM, 51(8):58–67, 2008. [22] L. Wasden. Internet lingo dictionary: A parents guide to codes used in chat rooms, instant messaging, text messaging. Technical report, and blogs. Technical report, Attorney General, 2010. 43
|