1. Laws, J.O. and D.A. Parsons, The relation of raindrop-size to intensity. Transactions, American Geophysical Union, 1943. 24(2): p. 452-460.
2. Marshall, J.S., R.C. Langille, and W.M.K. Palmer, MEASUREMENT OF RAINFALL BY RADAR. Journal of Meteorology, 1947. 4(6): p. 186-192.
3. Bringi, V.N. and V. Chandrasekar, Polarimetric Doppler Weather Radar, Principles and Applications. 2001.
4. Marshall, J.S. and W.M.K. Palmer, THE DISTRIBUTION OF RAINDROPS WITH SIZE. Journal of Meteorology, 1948. 5(4): p. 165-166.
5. Battan, L.J., Radar observation of the atmosphere. L. J. Battan (The University of Chicago Press) 1973. PP X, 324; 125 figures, 21 tables. £7•15. Quarterly Journal of the Royal Meteorological Society, 1973. 99(422): p. 793-793.
6. Zawadzki, I. Factors affecting the precision of radar measurements of rain. in Conference on Radar Meteorology, 22 nd, Zurich, Switzerland. 1984.
7. Seliga, T.A. and V.N. Bringi, Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation. Journal of Applied Meteorology, 1976. 15(1): p. 69-76.
8. Hall, M.P.M., et al., Rain drop sizes and rainfall rate measured by dual-polarization radar. Nature, 1980. 285(5762): p. 195-198.
9. Doneaud, A., et al., The Area-Time Integral as an Indicator for Convective Rain Volumes. Journal of Climate and Applied Meteorology, 1984. 23(4): p. 555-561.
10. Calheiros, R.V. and I. Zawadzki, Reflectivity-Rain Rate Relationships for Radar Hydrology in Brazil. Journal of Climate and Applied Meteorology, 1987. 26(1): p. 118-132.
11. Rongrui, X. and V. Chandrasekar, Development of a neural network based algorithm for rainfall estimation from radar observations. Geoscience and Remote Sensing, IEEE Transactions on, 1997. 35(1): p. 160-171.
12. Chen, C.-Y., et al., Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Natural Hazards, 2007. 40(2): p. 447-461.
13. Ulbrich, C.W., Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal of Climate and Applied Meteorology, 1983. 22(10): p. 1764-1775.
14. 陳盈臻, 臺灣北部鋒面強降水個案之雨滴粒徑觀測比較研究. 2013.
15. Zhang, J., K. Howard, and J.J. Gourley, Constructing Three-Dimensional Multiple-Radar Reflectivity Mosaics: Examples of Convective Storms and Stratiform Rain Echoes. Journal of Atmospheric and Oceanic Technology, 2005. 22(1): p. 30-42.
16. Xin, L., G. Reuter, and B. Larochelle, Reflectivity‐rain rate relationships for convective rainshowers in Edmonton: Research note. Atmosphere-Ocean, 1997. 35(4): p. 513-521.
17. Kumar, L.S., et al., Tropical rain classification and estimation of rain from ZR (reflectivity-rain rate) relationships. Progress In Electromagnetics Research B, 2011. 32: p. 107-127.
18. 吳舜華, 利用雨滴譜儀分析不同降水系統之微物理特性研究. 2006.
19. Sachidananda, M. and D.S. Zrnić, Rain Rate Estimates from Differential Polarization Measurements. Journal of Atmospheric and Oceanic Technology, 1987. 4(4): p. 588-598.
20. Zrnić, D.S., et al., Sensitivity Analysis of Polarimetric Variables at a 5-cm Wavelength in Rain. Journal of Applied Meteorology, 2000. 39(9): p. 1514-1526.
21. Guifu, Z., J. Vivekanandan, and E. Brandes, A method for estimating rain rate and drop size distribution from polarimetric radar measurements. Geoscience and Remote Sensing, IEEE Transactions on, 2001. 39(4): p. 830-841.
22. 紀博庭;陳台琦;呂崇華, 雙偏極化雷達觀測參數反求雨滴粒徑分布及降雨估計. 大氣科學, 2007. 第三十六期第一號.23. Zhang, J., et al., National Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans. Bulletin of the American Meteorological Society, 2011. 92(10): p. 1321-1338.
24. Collier, C.G., Applications of Weather Radar Systems: A Guide to Uses of Radar Data in Meteorology and Hydrology (Wiley-Praxis Series in Atmospheric Physics). 1996.
25. 雷鳳;周仲島, C頻偏振雷達總傳播相位偏移差面積雨量估計法之研究. 大氣科學, 2006. 第三十四期第二號.
26. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, A practical guide to support vector classification. 2003.
27. Vapnik, V. and A. Lerner, Pattern Recognition using Generalized Portrait Method. Automation and Remote Control, 1963. 24.
28. Vapnik, V.N., Estimation of Dependences Based on Empirical Data (Series: Information Science and Statistics). 1979.
29. Vapnik, V.N., An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999. 10(5): p. 988-999.
30. Burges, C.C., A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998. 2(2): p. 121-167.
31. Cortes, C. and V. Vapnik, Support-Vector Networks. Machine Learning, 1995. 20(3): p. 273-297.
32. Chih-Wei, H. and L. Chih-Jen, A comparison of methods for multiclass support vector machines. Neural Networks, IEEE Transactions on, 2002. 13(2): p. 415-425.
33. Vapnik, V.N., The nature of statistical learning theory. 1995: Springer-Verlag New York, Inc. 188.
34. Chang, C.-C. and C.-J. Lin, LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2011. 2(3): p. 1-27.
35. Rosenblatt, F., Principles of neurodynamics: perceptrons and the theory of brain mechanisms. 1962: Spartan Books.
36. Aydin, K., H. Direskeneli, and T.A. Seliga, Dual-Polarzation Radar Estimation of Rainfall Parameters Compared with Ground-Based Disdrometer Measurements: October 29, 1982 Central Illinois Expenment. Geoscience and Remote Sensing, IEEE Transactions on, 1987. GE-25(6): p. 834-844.
37. Ryzhkov, A.V., S.E. Giangrande, and T.J. Schuur, Rainfall Estimation with a Polarimetric Prototype of WSR-88D. Journal of Applied Meteorology, 2005. 44(4): p. 502-515.
38. Gourley, J.J. and B.E. Vieux, A Method for Evaluating the Accuracy of Quantitative Precipitation Estimates from a Hydrologic Modeling Perspective. Journal of Hydrometeorology, 2005. 6(2): p. 115-133.
39. Young, C.B., et al., An evaluation of NEXRAD precipitation estimates in complex terrain. Journal of Geophysical Research, 1999. 104(D16): p. 19691.
40. Austin, P.M., Relation between Measured Radar Reflectivity and Surface Rainfall. Monthly Weather Review, 1987. 115(5): p. 1053-1070.
41. Ryzhkov, A.V. and D.S. Zrnić, Comparison of Dual-Polarization Radar Estimators of Rain. Journal of Atmospheric and Oceanic Technology, 1995. 12(2): p. 249-256.
42. Multi-Radar/Multi-Sensor System (MRMS/q3)網站
http://mrms.ou.edu
43. 維基百科過度擬合(Overfitting)簡介網站
http://en.wikipedia.org/wiki/Overfitting
44. 五分山氣象雷達站介紹網頁http://www.cwb.gov.tw/V7/eservice/docs/overview/organ/stations/46685/
45. 臺北氣象站介紹網頁http://www.cwb.gov.tw/V7/eservice/docs/overview/organ/stations/46692/
46. 類神經網路與深度學習(Neural network and deep learning)電子書首頁 http://neuralnetworksanddeeplearning.com/
47. 筆者的Github首頁
https://github.com/joehuang74
48. 第二代氣象資料整合處理及顯示系統(Advanced Weather Interactive Processing System II, AWIPS II)
http://www.unidata.ucar.edu/software/awips2/
49. Reflectivity-Rainfall Rate Relationships In Operational Meteorology
http://www.srh.noaa.gov/tlh/?n=research-zrpaper