|
1. Boh, B., et al., Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev, 2007. 13: p. 265-301. 2. Liao, C.H., et al., Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from Ganoderma tsugae in A549 human lung adenocarcinoma cell line. Mol Carcinog, 2006. 45(4): p. 220-9. 3. Yeh, C.H., et al., Polysaccharides PS-G and protein LZ-8 from Reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and T lymphocytes. J Agric Food Chem, 2010. 58(15): p. 8535-44. 4. Li, Q.Z., X.F. Wang, and X.W. Zhou, Recent status and prospects of the fungal immunomodulatory protein family. Crit Rev Biotechnol, 2011. 31(4): p. 365-75. 5. Lin, C.H., et al., GMI, a Ganoderma immunomodulatory protein, down-regulates tumor necrosis factor alpha-induced expression of matrix metalloproteinase 9 via NF-kappaB pathway in human alveolar epithelial A549 cells. J Agric Food Chem, 2010. 58(22): p. 12014-21. 6. Lin, C.C., et al., A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol Immunother, 2011. 60(7): p. 1019-27. 7. Lin, Y.L., et al., An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and MAPK pathways. J Leukoc Biol, 2009. 86(4): p. 877-89. 8. Hsu, H.Y., et al., Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. J Cell Physiol, 2008. 215(1): p. 15-26. 9. Wu, C.T., et al., Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis, 2011. 32(12): p. 1890-6. 10. Lin, C.-H., et al., A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process Biochemistry, 2010. 45(9): p. 1537-1542. 11. Hsin, I.L., et al., GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells. Autophagy, 2011. 7(8): p. 873-882. 12. Wang, Y., et al., Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. Chin J Cancer, 2011. 30(10): p. 690-700. 13. Yang, Z.J., et al., The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther, 2011. 10(9): p. 1533-41. 14. Verfaillie, T., et al., Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy. Int J Cell Biol, 2010. 2010: p. 930509. 15. Yang, Z. and D.J. Klionsky, Eaten alive: a history of macroautophagy. Nat Cell Biol, 2010. 12(9): p. 814-22. 16. Kaufmann, A., et al., Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell, 2014. 156(3): p. 469-81. 17. Chen, Y. and L. Yu, Autophagic lysosome reformation. Exp Cell Res, 2013. 319(2): p. 142-6. 18. Lamb, C.A., T. Yoshimori, and S.A. Tooze, The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 2013. 14(12): p. 759-74. 19. Kang, R., et al., The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ, 2011. 18(4): p. 571-80. 20. Xu, C., B. Bailly-Maitre, and J.C. Reed, Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest, 2005. 115(10): p. 2656-64. 21. Deegan, S., et al., Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci, 2013. 70(14): p. 2425-41. 22. Bertolotti, A., et al., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol, 2000. 2(6): p. 326-32. 23. Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol, 2012. 13(2): p. 89-102. 24. Schroder, M. and R.J. Kaufman, The mammalian unfolded protein response. Annu Rev Biochem, 2005. 74: p. 739-89. 25. Ding, W.X., et al., Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol, 2007. 171(2): p. 513-24. 26. Kouroku, Y., et al., ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ, 2007. 14(2): p. 230-9. 27. Naldini, L., et al., In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996. 272(5259): p. 263-7. 28. Miyoshi, H., et al., Development of a self-inactivating lentivirus vector. J Virol, 1998. 72(10): p. 8150-7. 29. Kafri, T., et al., A packaging cell line for lentivirus vectors. J Virol, 1999. 73(1): p. 576-84. 30. Liang, C., et al., Recombinant Lz-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells. Oncol Rep, 2012. 27(4): p. 1079-89. 31. Wang, X.J., et al., A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy. Autophagy, 2013. 9(10): p. 1500-8. 32. Kroemer, G., G. Marino, and B. Levine, Autophagy and the integrated stress response. Mol Cell, 2010. 40(2): p. 280-93. 33. Hippert, M.M., P.S. O'Toole, and A. Thorburn, Autophagy in cancer: good, bad, or both? Cancer Res, 2006. 66(19): p. 9349-51. 34. Salazar, M., et al., Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest, 2009. 119(5): p. 1359-72. 35. Tsujimoto, Y. and S. Shimizu, Another way to die: autophagic programmed cell death. Cell Death Differ, 2005. 12 Suppl 2: p. 1528-34. 36. He, C. and D.J. Klionsky, Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 2009. 43: p. 67-93. 37. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52. 38. Shibutani, S.T. and T. Yoshimori, A current perspective of autophagosome biogenesis. Cell Res, 2014. 24(1): p. 58-68. 39. Su, Q., et al., Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation. J Biol Chem, 2008. 283(1): p. 469-75. 40. Fels, D.R. and C. Koumenis, The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther, 2006. 5(7): p. 723-8. 41. Harding, H.P., et al., Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell, 2000. 5(5): p. 897-904. 42. Szegezdi, E., et al., Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006. 7(9): p. 880-5. 43. Matsumoto, H., et al., Selection of autophagy or apoptosis in cells exposed to ER-stress depends on ATF4 expression pattern with or without CHOP expression. Biol Open, 2013. 2(10): p. 1084-90. 44. Henriksen, L., et al., Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS One, 2013. 8(3): p. e58148. 45. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81.
|