|
REFERENCES
1 Li XC, Yu C, Sun WK, Liu GY, Jia JY, Wang YP. Pharmacokinetics of magnesium lithospermate B after intravenous administration in beagle dogs. Acta Pharmacol Sin 2004; 25: 1402-7. 2 Guo ZJ, Zhang Y, Tang X, Li H, Sun QS. Pharmacokinetic interaction between tanshinones and polyphenolic extracts of salvia miltinorrhiza BUNGE after intravenous administration in rats. Biol Pharm Bull 2008; 31: 1469-74. 3 O K, Lynn EG, Vazhappilly R, Au-Yeung KK, Zhu DY, Siow YL. Magnesium tanshinoate B (MTB) inhibits low density lipoprotein oxidation. Life Sci 2001; 68: 903-12. 4 Yokozawa T, Lee TW, Oura H, Nonaka G, Nishioka I. Effect of magnesium lithospermate B in rats with sodium-induced hypertension and renal failure. Nephron 1992; 60: 460-5. 5 Fung KP, Wu J, Zeng LH, Wong HN, Lee CM, Hon PM, et al. Lithospermic acid B as an antioxidant-based protector of cultured ventricular myocytes and aortic endothelial cells of rabbits. Life Sci 1993; 53: PL189-93. 6 Yokozawa T, Chung HY, Dong E, Oura H. Confirmation that magnesium lithospermate B has a hydroxyl radical- scavenging action. Exp Toxicol Pathol 1995; 47: 341-4. 7 Kasimu R, Tanaka K, Tezuka Y, Gong ZN, Li JX, Basnet P, et al. Comparative study of seventeen Salvia plants: aldose reductase inhibitory activity of water and MeOH extracts and liquid chromatography-mass spectrometry (LC- MS) analysis of water extracts. Chem Pharm Bull (Tokyo) 1998; 46: 500-4. 8 Wu XJ, Wang YP, Wang W, Sun WK, Xu YM, Xuan LJ. Free radical scavenging and inhibition of lipid peroxidation by magnesium lithospermate B. Acta Pharmacol Sin 2000; 21: 855-8. 9 Cheng TO. Danshen: a versatile Chinese herbal drug for the treatment of coronary heart disease. Int J Cardiol 2006; 113: 437-8. 10 Ji XY, Tan BK, Zhu YZ. Salvia miltiorrhiza and ischemic diseases. Acta Pharmacol Sin 2000; 21: 1089-94. 11 Xu W, Yang J, Wu LM. Cardioprotective effects of tanshinone IIA on myocardial ischemia injury in rats. Pharmazie 2009; 64: 332-6. 12 Pan C, Lou L, Huo Y, Singh G, Chen M, Zhang D, et al. Salvianolic acid B and Tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways. Ther Adv Cardiovasc Dis 2011; 5: 99-111. 13 Ren ZH, Tong YH, Xu W, Ma J, Chen Y. Tanshinone II A attenuates inflammatory responses of rats with myocardial infarction by reducing MCP-1 expression. Phytomedicine 2010; 17: 212-8. 14 Dong K, Xu W, Yang J, Qiao H, Wu L. Neuroprotective effects of Tanshinone IIA on permanent focal cerebral ischemia in mice. Phytother Res 2009; 23: 608-13. 15 Tzen JT, Jinn TR, Chen YC, Li FY, Cheng FC, Shi LS, et al. Magnesium lithospermate B possesses inhibitory activity on Na+,K+-ATPase and neuroprotective effects against ischemic stroke. Acta Pharmacol Sin 2007; 28: 609-15. 16 Chen RJ, Jinn TR, Chen YC, Chung TY, Yang WH, Tzen JT. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+ -ATPase inhibitors. Acta Pharmacol Sin 2011; 32: 141-51. 17 Aronson JK. Digoxin revisited. QJM 1998; 91: 713. 18 Riviere EJ, Papich GM. Veterinary Pharmacology & Therapeutics 9ed. Wiley-Blackwell 2009. 19 Haft JI, Shahabadi AE, Fano A. Clinical experience with ouabain administered in small divided doses in the monitored patient. Chest 1973; 63: 868-74. 20 Schonfeld W, Weiland J, Lindig C, Masnyk M, Kabat MM, Kurek A, et al. The lead structure in cardiac glycosides is 5 beta, 14 beta-androstane-3 beta 14-diol. Naunyn Schmiedebergs Arch Pharmacol 1985; 329: 414-26. 21 Schatzmann HJ. [Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane]. Helv Physiol Pharmacol Acta 1953; 11: 346-54. 22 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. 1957. Biochim Biophys Acta 1989; 1000: 439-46. 23 Ogawa H, Shinoda T, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A 2009; 106: 13742-7. 24 Aperia A. New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J Intern Med 2007; 261: 44-52. 25 Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 1998; 275: F633-50. 26 Kyte J. Molecular considerations relevant to the mechanism of active transport. Nature 1981; 292: 201-4. 27 Blanco G, DeTomaso AW, Koster J, Xie ZJ, Mercer RW. The alpha-subunit of the Na,K-ATPase has catalytic activity independent of the beta-subunit. J Biol Chem 1994; 269: 23420-5. 28 Shull GE, Greeb J, Lingrel JB. Molecular cloning of three distinct forms of the Na+,K+-ATPase alpha-subunit from rat brain. Biochemistry 1986; 25: 8125-32. 29 Xu KY, Zhu W, Chen L, Defilippi C, Zhang J, Xiao RP. Mechanistic distinction between activation and inhibition of (Na(+)+K(+))-ATPase-mediated Ca(2+) influx in cardiomyocytes. Biochem Biophys Res Commun 2011; 406: 200-3. 30 Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 1952; 116: 449-72. 31 Martin DW. Structure-function relationships in the NA+,K+-pump. Semin Nephrol 2005; 25: 282-91. 32 Joubert PH, Grossmann M. Local and systemic effects of Na+/K+ATPase inhibition. Eur J Clin Invest 2001: 31 suppl 2: 1-4. 33 Janvier NC, Boyett MR. The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res 1996; 32: 69-84. 34 Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem 1957; 7: 255-318. 35 Norman C, Rall JA, Tikunova SB, Davis JP. Modulation of the rate of cardiac muscle contraction by troponin C constructs with various calcium binding affinities. Am J Physiol Heart Circ Physiol 2007; 293: H2580-7. 36 Wu SH, Ryvarden L, Chang TT. Antrodia camphorata (“niu- chang-chih”), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sin 1997; 38: 273-5. 37 Chang TT, Chou WN. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Botanical Bulletin Academia Sinica 2004; 45: 347-52. 38 Chang TT, Chou WN. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol Res 1995; 99: 756- 8. 39 Chen JC, Lin WH, Chen CN, Sheu SJ, Huang SJ, Chen YL. Development of Antrodia camphorata mycelium with submerge culture. Fung Sci 2001; 16: 7-22. 40 Chang CY, Lue MY, Pan TM. Determination of adenosine, cordycepin and ergosterol contents in cultivated Antrodia camphorata by HPLC method. J FOOD DRUG ANAL 2005; 13: 338-42. 41 Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol 2009; 121: 194- 212. 42 Chen CJ, Su CH, Lan MH. Study on Solid Cultivation and Bioactivity of Antrodia Camphorata. Fung Sci 2001; 16: 65-72. 43 Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, et al. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 2005; 5: 1914-25. 44 Shen YC, Wang YH, Chou YC, Chen CF, Lin LC, Chang TT, et al. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med 2004; 70: 310-4. 45 Liu DZ, Liang HJ, Chen CH, Su CH, Lee TH, Huang CT, et al. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid- state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. J Ethnopharmacol 2007; 113: 45-53. 46 Huang CH, Chang YY, Liu CW, Kang WY, Lin YL, Chang HC, et al. Fruiting body of Niuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage. J Agric Food Chem 2010; 58: 3859-66. 47 Dai YY, Chuang CH, Tsai CC, Sio HM, Huang SC, Chen JC, et al. The protection of Antrodia camphorata against acute hepatotoxicity of alcohol in rats. J Food Drug Anal 2003; 11: 177-85. 48 Rao YK, Fang SH, Tzeng YM. Evaluation of the anti- inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 2007; 114: 78-85. 49 Hsu YL, Kuo YC, Kuo PL, Ng LT, Kuo YH, Lin CC. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 2005; 221: 77-89. 50 Hench PS, Kendall E, Slocumb CH. The effect of a hormone of the adrenal cortex (17-hydroxy-11 dehydrocorticosterone: compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis: preliminary report. Proc Staff Meet Mayo Clin 1949; 24: 181-97. 51 Werbin H, Chaikoff IL. Utilization of adrenal gland cholesterol for synthesis of cortisol by the intact normal and the ACTH-treated guinea pig. Arch Biochem Biophys 1961; 93: 476-82. 52 Locatelli V, Bresciani E, Tamiazzo L, Torsello A. Central nervous system-acting drugs influencing hypothalamic-pituitary-adrenal axis function. Endocr Dev 2010; 17: 108-20. 53 Breuner CW, Orchinik M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol 2002; 175: 99-112. 54 Lewis JG, Bagley CJ, Elder PA, Bachmann AW, Torpy DJ. Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clin Chim Acta 2005; 359: 189-94. 55 Munck A, Brinck-Johnsen T. Specific and nonspecific physicochemical interactions of glucocorticoids and related steroids with rat thymus cells in vitro. J Biol Chem 1968; 243: 5556-65. 56 Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985; 318: 635-41. 57 McKenna NJ, Lanz RB, O''Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999; 20: 321-44. 58 Neeck G. Fifty years of experience with cortisone therapy in the study and treatment of rheumatoid arthritis. Ann N Y Acad Sci 2002; 966: 28-38. 59 Longui CA. Glucocorticoid therapy: minimizing side effects. J Pediatr 2007; 83: S163-77. 60 Hollenberg SM, Evans RM. Multiple and cooperative trans- activation domains of the human glucocorticoid receptor. Cell 1988; 55: 899-906. 61 Dahlman-Wright K, Baumann H, McEwan IJ, Almlof T, Wright AP, Gustafsson JA, et al. Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. Proc Natl Acad Sci U S A 1995; 92: 1699-703. 62 Zhou J, Cidlowski JA. The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 2005; 70: 407-17. 63 Duma D, Jewell CM, Cidlowski JA. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J Steroid Biochem Mol Biol 2006; 102: 11- 21. 64 Freedman LP, Luisi BF. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. J Cell Biochem 1993; 51: 140-50. 65 Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 2002; 110: 93-105. 66 Kauppi B, Jakob C, Farnegardh M, Yang J, Ahola H, Alarcon M, et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 2003; 278: 22748-54. 67 Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor''s ligand binding domains. Proc Natl Acad Sci U S A 1998; 95: 5998-6003. 68 Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 2010; 75: 1-12. 69 Bourguet W, Germain P, Gronemeyer H. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 2000; 21: 381-8. 70 Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228: 111-33. 71 De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 2009; 23: 281-91. 72 Wallace AD, Cidlowski JA. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 2001; 276: 42714-21. 73 Galliher-Beckley AJ, Cidlowski JA. Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 2009; 61: 979-86. 74 Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 2010; 120: 69-75. 75 De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol 2000; 109: 16-22. 76 Xu J, Fan G, Chen S, Wu Y, Xu XM, Hsu CY. Methylprednisolone inhibition of TNF-alpha expression and NF-kB activation after spinal cord injury in rats. Brain Res Mol Brain Res 1998; 59: 135-42. 77 Liberman AC, Druker J, Perone MJ, Arzt E. Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev 2007; 18: 45-56. 78 De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 2009; 23: 281-91. 79 Huxford T, Huang DB, Malek S, Ghosh G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 1998; 95: 759- 70. 80 Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A 1994; 91: 752-6. 81 Wissink S, van Heerde EC, vand der Burg B, van der Saag PT. A dual mechanism mediates repression of NF-kappaB activity by glucocorticoids. Mol Endocrinol 1998; 12: 355-63. 82 Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF- kappa B activity through induction of I kappa B synthesis. Science 1995; 270: 286-90. 83 Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240-6. 84 Tao Y, Williams-Skipp C, Scheinman RI. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. J Biol Chem 2001; 276: 2329-32.
|