跳到主要內容

臺灣博碩士論文加值系統

(44.204.24.82) 您好!臺灣時間:2024/03/29 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭毅筠
研究生(外文):Kuo, Yi-Yun
論文名稱:樟芝改善及預防高脂飼料誘發倉鼠高血脂症之效果
論文名稱(外文):Effects of Antrodia cinnamomea on the Attenuation and Prevention of High Fat Diet-Induced Hyperlipidemia in Hamsters
指導教授:郭家芬郭家芬引用關係
指導教授(外文):Kuo, Chia-Feng
口試委員:陳勁初簡廷易
口試委員(外文):Chen, Chin-ChuChien, Ting-Yi
口試日期:2015-01-29
學位類別:碩士
校院名稱:實踐大學
系所名稱:食品營養與保健生技學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:133
中文關鍵詞:樟芝高血脂倉鼠
外文關鍵詞:Antrodia cinnamomeahyperlipidmiahamsters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
牛樟芝Antrodia cinnamomea (AC)為台灣特有的藥用真菌,具有抗癌、降血壓、降血糖、降血脂、調節免疫、保護肝臟等功效。樟芝降血脂的動物模式在先前研究為餵食高脂飼料並同時補充樟芝,還沒有研究針對先餵食高脂飼料再給予樟芝補充後觀察樟芝對於高血脂的改善效果。本研究希望探討(i)樟芝改善高脂飲食誘發倉鼠高血脂症之效果;(ii)樟芝預防高脂飲食誘發倉鼠高血脂症之效果。實驗一將倉鼠分為四組,控制組(control, C12)於實驗期12週皆餵食一般飼料,高脂組(high-fat, HF12)餵食高脂飼料;一倍劑量樟芝組(HF12 +AC I)以及兩倍劑量樟芝組(HF12 + AC II)先餵食高脂飼料4週後,於第5週起每天管灌一倍劑量樟芝菌絲體(133.2 mg/kg BW)以及兩倍劑量樟芝菌絲體(266.4 mg/kg BW)並同時餵食高脂飼料直到12週實驗期結束。實驗二將倉鼠分為四組,為控制組(Control, C4)餵食一般飼料,高脂組(high fat, HF4)餵食高脂飼料,一倍劑量樟芝組(HF4 +AC I)以及兩倍劑量樟芝組(HF4 + AC II)為同時餵食高脂飼料與不同劑量樟芝,實驗期為期4週。結果顯示,不論在改善型或預防型的實驗中,補充樟芝可降低倉鼠血液及肝臟中總膽固醇(total cholesterol, TC)與三酸甘油酯(triglycerides, TG)濃度、肝臟中脂質過氧化指標TBARS、肝臟損傷指標alanine transaminase (ALT),但糞便中TC的排除量顯著較高。預防型實驗糞便TG及膽酸在HF+AC II組中的排出量明顯高於HF組。實驗一測量肝臟中脂質相關蛋白質表現,發現餵食樟芝能夠提高peroxisome proliferate-activated receptor (PPAR) γ、cholesterol 7α-hydroxylase (CYP7A1)並降低HMG-CoA reductase、acyl-CoA: cholesterol acyltransferase-2 (ACAT-2)的表現。另外,攝取樟芝的倉鼠體內與發炎相關的cyclooxygenase-2 (COX-2)、annexin A3 (ANXA3)的表現顯著低於高脂組。綜合以上結果,樟芝對於高脂飼料所誘發的高血脂症具有改善效果。

關鍵字:樟芝、高血脂、倉鼠
Antrodia cinnamomea (AC) is a unique mushroom in Taiwan. AC has been claimed to possess many biological activities including anti-cancer, anti-hypertension, anti-hyperglycemia, anti-hyperlipidmia, immune-modulation, and liver protection. In previous studies, AC was administered to animals with high-fat diets to examine its protective effect on hyperlipidemia. In this current study, two experiments were conducted. In experiment I, hamsters were fed high-fat diet for 4 weeks to induce hyperlipidemia, followed by the administration of AC mycelia powder (133.2 and 266.4 mg/kg BW for AC I and AC II groups, respectively) with high-fat diet for another 8 weeks. In experiment II, AC mycelia powder was given (133.2 and 266.4 mg/kg BW for AC I and AC II groups, respectively) to the hamsters with high-fat diet from the beginning of experiment and lasted for 4 weeks. In both experiments, supplementation of AC significantly down-regulated serum triglycerides (TG), total cholesterol (TC), alanine transaminase (ALT), and hepatic TBARS, but increased the excretion of TC in feces. In experiment I, the excretion of TG and bile acid in feces, the expression of peroxisome proliferate-activated receptor (PPAR) γ、and cholesterol 7α-hydroxylase (CYP7A1) were up-regulated by AC while the expression of HMG-CoA reductase and acyl-CoA: cholesterol acyltransferase-2 (ACAT-2) were suppressed by AC. Supplementation of AC also suppresses the expression of pro-inflammatory proteins cyclooxygenase-2 (COX-2) and annexin A3 (ANXA3). On the basic of the results, administration of AC attenuated the hyperlipidemia induced by high-fat diet.

Keyword: Antrodia cinnamomea, hyperlipidmia, hamsters
目錄
致謝 I
目錄 II
圖目錄 VIII
表目錄 X
摘要 XI
Abstract XII
前言 1
壹、樟芝 2
一、樟芝簡介 2
二、樟芝活性功效 3
(一)抑制癌細胞生長 3
(二)抗發炎 4
(三)保護肝臟 5
(四)降血脂 6
貳、高血脂 7
一、高血脂症定義 7
二、血脂與動脈硬化 9
參、體內脂質代謝 11
一、三酸甘油酯 11
二、膽固醇 12
三、脂蛋白 12
(一)乳糜微粒(chylomicron, CM) 13
(二)極低密度脂蛋白(very low density lipoprotein, VLDL) 13
(三)中密度脂蛋白(intermediate density lipoprotein, IDL) 16
(四)低密度脂蛋白(low density lipoprotein, LDL) 16
(五)高密度脂蛋白膽固醇(high density lipoprotein, HDL) 16
四、調控脂質代謝相關蛋白質 17
(一)Sterol regulatory element binding protein (SREBP) 17
(二)Acetyl-CoA carboxylase (ACC) 20
(三)Fatty acid synthase (FAS) 22
(四)HMG-CoA reductase (HMGCR) 22
(五)LDL receptor (LDLR) 24
(六)Cholesterol 7α-hydroxylase (CYP7A1) 26
(七)Acyl-CoA: cholesterol acyltransferase (ACAT) 27
(八)Microsomal triacylglycerol transport protein (MTP) 29
(九)Peroxisome proliferate-activated receptor (PPAR) 30
五、發炎反應相關蛋白質 31
(一)Cyclooxygenase-2 (COX-2) 31
(二)Annexin A3 (ANXA3) 33
六、脂質代謝之動物實驗模式 33
實驗目的 35
材料與方法 36
一、樟芝來源 36
二、實驗動物與飼養條件 36
(一)樟芝改善高脂飼料誘發倉鼠高血脂症之動物模式 36
(二)樟芝預防高脂飼料誘發倉鼠高血脂症之動物模式 38
三、樣品收集 41
四、血液生化值分析 41
(一)血清三酸甘油酯(triglycerides, TG)分析 41
(二)血清總膽固醇(total cholesterol, TC)分析 42
(三)血清高密度脂蛋白膽固醇(HDL-C)分析 43
(四)血清低密度脂蛋白膽固醇(LDL-C)分析 43
(五)血清天門冬胺酸轉胺酶(aspartate aminotransferase, AST)分析 44
(六)血清丙胺酸轉胺酶(alanine aminotransferase, ALT)分析 44
五、肝臟分析 45
(一)肝臟脂質萃取 45
(二)肝臟脂質分析 45
1. 肝臟三酸甘油酯濃度測定 45
2. 肝臟膽固醇濃度測定 46
(三)肝臟細胞質分離 46
(四)肝臟細胞質蛋白質濃度 46
(五)西方墨點法 47
1. Gel preparation 47
2. Sample preparation and gel electrophoresis 47
3. Transfer and blocking 49
4. Probing 50
5. Chemiluminescent detection 50
6. Stripping and reprobing 50
(六)肝臟脂質過氧化指標TBARS含量測定 53
六、糞便分析 53
(一)糞便脂質萃取 53
(二)糞便三酸甘油酯 53
(三)糞便膽固醇 54
(四)糞便膽酸分析 54
七、統計與分析 55
結果 56
壹、樟芝改善高脂飼料誘發倉鼠高血脂症之效果(實驗一) 56
一、樟芝對於倉鼠體重及臟器重的影響 56
二、樟芝對於倉鼠血液生化值的影響 58
(一)血清三酸甘油酯、總膽固醇、高密度與低密度脂蛋白膽固醇 58
1. 血清三酸甘油酯濃度 58
2. 血清總膽固醇濃度 60
3. 血清高密度與低密度脂蛋白膽固醇 60
(二)血清天門冬胺酸轉胺酶與丙胺酸轉胺酶活性 63
1. 血清天門冬胺酸轉胺酶活性 63
2. 血清丙胺酸轉胺酶活性 65
三、樟芝對於倉鼠肝臟脂質的影響 65
(一)肝臟三酸甘油酯含量 65
(二)肝臟膽固醇含量 65
四、樟芝對於倉鼠糞便脂質的影響 67
(一)糞便三酸甘油酯含量 67
(二)糞便膽固醇含量 67
(三)糞便膽酸含量 67
五、樟芝對於倉鼠肝臟TBARS的影響 67
六、樟芝對於倉鼠肝臟脂質代謝相關蛋白質表現的影響 70
(一)Sterol regulatory element binding protein-1 (SREBP-1) 70
(二)Acetyl-CoA carboxylase (ACC) 70
(三)Fatty acid synthase (FAS) 70
(四)HMG-CoA reductase (HMGCR) 74
(五)LDL receptor (LDLR) 74
(六)Cholesterol 7α-hydroxylase (CYP7A1) 74
(七)Acyl-CoA: cholesterol acyltransferase-2 (ACAT-2) 78
(八)Microsomal triacylglycerol transport protein (MTP) 78
(九)Peroxisome proliferate-activated receptor (PPAR) 78
七、樟芝對於倉鼠肝臟發炎反應相關蛋白質表現的影響 83
(一)Cyclooxygenase-2 (COX-2) 83
(二)Annexin A3 (ANXA3) 83
貳、樟芝預防高脂飼料誘發倉鼠高血脂症之效果(實驗二) 86
一、樟芝對於倉鼠體重及臟器重的影響 86
二、樟芝對於倉鼠血液生化值的影響 86
(一)血清三酸甘油酯、總膽固醇 88
1. 血清三酸甘油酯濃度 88
2. 血清總膽固醇濃度 88
(二)血清天門冬胺酸轉胺酶與丙胺酸轉胺酶活性 88
1. 血清天門冬胺酸轉胺酶活性 88
2. 血清丙胺酸轉胺酶活性 91
三、樟芝對於倉鼠肝臟脂質的影響 91
(一)肝臟三酸甘油酯含量 91
(二)肝臟膽固醇含量 91
四、樟芝對於倉鼠糞便脂質的影響 91
(一)糞便三酸甘油酯含量 91
(二)糞便膽固醇含量 94
(三)糞便膽酸含量 94
五、樟芝對於倉鼠肝臟TBARS的影響 94
討論 97
一、樟芝對於倉鼠飼料攝取、體重及臟器重的探討 97
二、樟芝對於倉鼠體內生化指標的探討 97
三、樟芝對於倉鼠體內脂質平衡的探討 100
四、樟芝對於倉鼠發炎反應的探討 105
參考文獻 109


參考文獻
1.Wu, S. H.; Yu, Z. H.; Dai, Y. C.; Chen, C. T.; Su, C. H.; Chen, L. C.; Hsu, W. C.; Hwang, G. Y., Taiwanofungus, a polypore new genus. Fungal Sci. 2004, 19, 109-116.
2.Cherng, I.-H.; Chiang, H.-C.; Cheng, M.-C.; Wang, Y., Three new triterpenoids from Antrodia cinnamomea. J. Nat. Prod. 1995, 58, 365-371.
3.Ao, Z. H.; Xu, Z. H.; Lu, Z. M.; Xu, H. Y.; Zhang, X. M.; Dou, W. F., Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J. Ethnopharmacol. 2009, 121, 194-212.
4.Liu, Y.; Lu, K.; Ho, C.; Sheen, L., Protective effects of Antrodia cinnamomea against liver injury. J. Tradit. Complemen. Med. 2012, 2, 284-294.
5.Lu, M. C.; El-Shazly, M.; Wu, T. Y.; Du, Y. C.; Chang, T. T.; Chen, C. F.; Hsu, Y. M.; Lai, K. H.; Chiu, C. P.; Chang, F. R.; Wu, Y. C., Recent research and development of Antrodia cinnamomea. Pharmacol. Ther. 2013, 139, 124-156.
6.Chiang, P. C.; Lin, S. C.; Pan, S. L.; Kuo, C. H.; Tsai, I. L.; Kuo, M. T.; Wen, W. C.; Chen, P.; Guh, J. H., Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem. Pharmacol. 2010, 79, 162-171.
7.Lin, Y. W.; Pan, J. H.; Liu, R. H.; Kuo, Y. H.; Sheen, L. Y.; Chiang, B. H., The 4-acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. J. Sci. Food Agric. 2010, 90, 1739-1744.
8.Yu, C. C.; Chiang, P. C.; Lu, P. H.; Kuo, M. T.; Wen, W. C.; Chen, P.; Guh, J. H., Antroquinonol, a natural ubiquinone derivative, induces a cross talk between apoptosis, autophagy and senescence in human pancreatic carcinoma cells. J. Nutr. Biochem. 2012, 23, 900-907.
9.Yeh, C. T.; Rao, Y. K.; Yao, C. J.; Yeh, C. F.; Li, C. H.; Chuang, S. E.; Luong, J. H.; Lai, G. M.; Tzeng, Y. M., Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett. 2009, 285, 73-79.
10.Chiou, J. F.; Wu, A. T.; Wang, W. T.; Kuo, T. H.; Gelovani, J. G.; Lin, I. H.; Wu, C. H.; Chiu, W. T.; Deng, W. P., A preclinical evaluation of Antrodia camphorata alcohol extracts in the treatment of non-small cell lung cancer using non-invasive molecular imaging. Evid. Based Complement. Alternat. Med. 2011, 2011, 1-12.
11.Hseu, Y. C.; Wu, F. Y.; Wu, J. J.; Chen, J. Y.; Chang, W. H.; Lu, F. J.; Lai, Y. C.; Yang, H. L., Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int. Immunopharmacol. 2005, 5, 1914-1925.
12.Yang, S. S.; Wang, G. J.; Wang, S. Y.; Lin, Y. Y.; Kuo, Y. H.; Lee, T. H., New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata. Planta Med. 2009, 75, 512-516.
13.Chen, C. C.; Liu, Y. W.; Ker, Y. B.; Wu, Y. Y.; Lai, E. Y.; Chyau, C. C.; Hseu, T. H.; Peng, R. Y., Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. J. Agric. Food Chem. 2007, 55, 5007-5012.
14.Hsieh, Y. H.; Chu, F. H.; Wang, Y. S.; Chien, S. C.; Chang, S. T.; Shaw, J. F.; Chen, C. Y.; Hsiao, W. W.; Kuo, Y. H.; Wang, S. Y., Antrocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus, and its mechanisms. J. Agric. Food Chem. 2010, 58, 3153-3158.
15.Huang, C. H.; Chang, Y. Y.; Liu, C. W.; Kang, W. Y.; Lin, Y. L.; Chang, H. C.; Chen, Y. C., Fruiting body of Niuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage. J. Agric. Food Chem. 2010, 58, 3859-3866.
16.Huang, G.-J.; Deng, J.-S.; Huang, S.-S.; Shao, Y.-Y.; Chen, C.-C.; Kuo, Y.-H., Protective effect of antrosterol from Antrodia camphorata submerged whole broth against carbon tetrachloride-induced acute liver injury in mice. Food Chem. 2012, 132, 709-716.
17.Lai, M.-N.; Ko, H.-J.; Ng, L.-T., Hypolipidemic effects of Antrodia cinnamomea extracts in high-fat diet-fed hamsters. J. Food Biochem. 2012, 36, 233-239.
18.Suk, F. M.; Lin, S. Y.; Chen, C. H.; Yen, S. J.; Su, C. H.; Liu, D. Z.; Hou, W. C.; Hung, L. F.; Lin, P. J.; Liang, Y. C., Taiwanofungus camphoratus activates peroxisome proliferator-activated receptors and induces hypotriglyceride in hypercholesterolemic rats. Biosci. Biotechnol. Biochem. 2008, 72, 1704-1713.
19.Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143-3421.
20.Fuentes, R.; Uusitalo, T.; Puska, P.; Tuomilehto, J.; Nissinen, A., Blood cholesterol level and prevalence of hypercholesterolaemia in developing countries: a review of population-based studies carried out from 1979 to 2002. Eur. J. Cardiovasc. Prev. Rehabil. 2003, 10, 411-419.
21.Assmann, G.; Cullen, P.; Jossa, F.; Lewis, B.; Mancini, M., Coronary heart disease: reducing the risk: the scientific background to primary and secondary prevention of coronary heart disease. A worldwide view. International Task force for the Prevention of Coronary Heart disease. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1819-1824.
22.Sharrett, A. R.; Ballantyne, C. M.; Coady, S. A.; Heiss, G.; Sorlie, P. D.; Catellier, D.; Patsch, W., Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the atherosclerosis risk in communities (ARIC) study. Circulation 2001, 104, 1108-1113.
23.Heinecke, J. W., Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 1998, 141, 1-15.
24.Van Gaal, L. F.; Mertens, I. L.; De Block, C. E., Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875-880.
25.Glass, C. K.; Witztum, J. L., Atherosclerosis. the road ahead. Cell 2001, 104, 503-516.
26.Ross, R., Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999, 340, 115-126.
27.Gotto, A. M., Jr.; Pownall, H. J.; Havel, R. J., Introduction to the plasma lipoproteins. Methods Enzymol. 1986, 128, 3-41.
28.Ginsberg, H. N., Lipoprotein physiology and its relationship to atherogenesis. Endocrinol. Metab. Clin. North Am. 1990, 19, 211-228.
29.Havel, R. J.; Eder, H. A.; Bragdon, J. H., The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 1955, 34, 1345-1353.
30.Green, P. H.; Glickman, R. M., Intestinal lipoprotein metabolism. J. Lipid Res. 1981, 22, 1153-1173.
31.Bisgaier, C. L.; Glickman, R. M., Intestinal synthesis, secretion, and transport of lipoproteins. Annu. Rev. Physiol. 1983, 45, 625-636.
32.Skottova, N.; Savonen, R.; Lookene, A.; Hultin, M.; Olivecrona, G., Lipoprotein lipase enhances removal of chylomicrons and chylomicron remnants by the perfused rat liver. J. Lipid Res. 1995, 36, 1334-1344.
33.Beisiegel, U.; Weber, W.; Bengtsson-Olivecrona, G., Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 8342-8346.
34.Chan, D. C.; Barrett, P. H.; Watts, G. F., Lipoprotein transport in the metabolic syndrome: methodological aspects of stable isotope kinetic studies. Clin. Sci. (Lond.) 2004, 107, 221-232.
35.Demant, T.; Carlson, L. A.; Holmquist, L.; Karpe, F.; Nilsson-Ehle, P.; Packard, C. J.; Shepherd, J., Lipoprotein metabolism in hepatic lipase deficiency: studies on the turnover of apolipoprotein B and on the effect of hepatic lipase on high density lipoprotein. J. Lipid Res. 1988, 29, 1603-1611.
36.Smith, J. R.; Osborne, T. F.; Goldstein, J. L.; Brown, M. S., Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J. Biol. Chem. 1990, 265, 2306-2310.
37.Smith, J. R.; Osborne, T. F.; Brown, M. S.; Goldstein, J. L.; Gil, G., Multiple sterol regulatory elements in promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J. Biol. Chem. 1988, 263, 18480-18487.
38.Horton, J. D., Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem. Soc. Trans. 2002, 30, 1091-1095.
39.Horton, J. D.; Goldstein, J. L.; Brown, M. S., SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109, 1125-1131.
40.Osborne, T. F., Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J. Biol. Chem. 2000, 275, 32379-32382.
41.Deng, Q.; Li, X.; Fu, S.; Yin, L.; Zhang, Y.; Wang, T.; Wang, J.; Liu, L.; Yuan, X.; Sun, G.; Wang, Z.; Liu, G.; Li, X., SREBP-1c gene silencing can decrease lipid deposits in bovine hepatocytes cultured in vitro. Cell. Physiol. Biochem. 2014, 33, 1568-1578.
42.Kim, Y. W.; Kim, Y. M.; Yang, Y. M.; Kim, T. H.; Hwang, S. J.; Lee, J. R.; Kim, S. C.; Kim, S. G., Inhibition of SREBP-1c-mediated hepatic steatosis and oxidative stress by sauchinone, an AMPK-activating lignan in Saururus chinensis. Free Radic. Biol. Med. 2010, 48, 567-578.
43.Oshaghi, E. A., Effects of walnut on lipid profile as well as the expression of sterol-regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator activated receptors α (PPARα) in diabetic rat. Food and Nutrition Sciences 2012, 3, 255-259.
44.Lane, M. D.; Hu, Z.; Cha, S. H.; Dai, Y.; Wolfgang, M.; Sidhaye, A., Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. Biochem. Soc. Trans. 2005, 33, 1063-1067.
45.Smith, A. C.; Cronan, J. E., Dimerization of the bacterial biotin carboxylase subunit is required for acetyl coenzyme A carboxylase activity in vivo. J. Bacteriol. 2012, 194, 72-78.
46.lHarwood, H. J., Jr.; Petras, S. F.; Shelly, L. D.; Zaccaro, L. M.; Perry, D. A.; Makowski, M. R.; Hargrove, D. M.; Martin, K. A.; Tracey, W. R.; Chapman, J. G.; Magee, W. P.; Dalvie, D. K.; Soliman, V. F.; Martin, W. H.; Mularski, C. J.; Eisenbeis, S. A., Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J. Biol. Chem. 2003, 278, 37099-37111.
47.Guo, P.; Kai, Q.; Gao, J.; Lian, Z.-q.; Wu, C.-m.; Wu, C.-a.; Zhu, H.-b., Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J. Pharmacol. Sci. 2010, 113, 395-403.
48.Chakravarty, B.; Gu, Z.; Chirala, S. S.; Wakil, S. J.; Quiocho, F. A., Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 15567-15572.
49.Latasa, M. J.; Griffin, M. J.; Moon, Y. S.; Kang, C.; Sul, H. S., Occupancy and function of the -150 sterol regulatory element and -65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Mol. Cell. Biol. 2003, 23, 5896-5907.
50.Paulauskis, J. D.; Sul, H. S., Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 1989, 264, 574-577.
51.Wang, Y.; Jones Voy, B.; Urs, S.; Kim, S.; Soltani-Bejnood, M.; Quigley, N.; Heo, Y. R.; Standridge, M.; Andersen, B.; Dhar, M.; Joshi, R.; Wortman, P.; Taylor, J. W.; Chun, J.; Leuze, M.; Claycombe, K.; Saxton, A. M.; Moustaid-Moussa, N., The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J. Nutr. 2004, 134, 1032-1038.
52.Gillespie, J. G.; Hardie, D. G., Phosphorylation and inactivation of HMG-CoA reductase at the AMP-activated protein kinase site in response to fructose treatment of isolated rat hepatocytes. FEBS Lett. 1992, 306, 59-62.
53.Van Rooyen, D. M.; Farrell, G. C., SREBP-2: a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J. Gastroenterol. Hepatol. 2011, 26, 789-795.
54.Jung, J. H.; Kim, H. S., The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease. Food Chem. Toxicol. 2013, 60, 404-412.
55.Ness, G. C.; Gertz, K. R., Hepatic HMG-CoA reductase expression and resistance to dietary cholesterol. Exp. Biol. Med. (Maywood) 2004, 229, 412-416.
56.Lee, C. L.; Tsai, T. Y.; Wang, J. J.; Pan, T. M., In vivo hypolipidemic effects and safety of low dosage Monascus powder in a hamster model of hyperlipidemia. Appl. Microbiol. Biotechnol. 2006, 70, 533-540.
57.Lee, C. L.; Hung, H. K.; Wang, J. J.; Pan, T. M., Red mold dioscorea has greater hypolipidemic and antiatherosclerotic effect than traditional red mold rice and unfermented dioscorea in hamsters. J. Agric. Food Chem. 2007, 55, 7162-7169.
58.Usifo, E.; Leigh, S. E.; Whittall, R. A.; Lench, N.; Taylor, A.; Yeats, C.; Orengo, C. A.; Martin, A. C.; Celli, J.; Humphries, S. E., Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann. Hum. Genet. 2012, 76, 387-401.
59.Brown, M. S.; Goldstein, J. L., Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 3330-3337.
60.Go, G. W.; Mani, A., Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med. 2012, 85, 19-28.
61.Moon, M. S.; Lee, M. S.; Kim, C. T.; Kim, Y., Dietary chitosan enhances hepatic CYP7A1 activity and reduces plasma and liver cholesterol concentrations in diet-induced hypercholesterolemia in rats. Nutr. Res. Pract. 2007, 1, 175-179.
62.Chang, T.-Y.; Li, B.-L.; Chang, C. C. Y.; Urano, Y., Acyl-coenzyme A:cholesterol acyltransferases. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1-E9.
63.Leon, C.; Hill, J. S.; Wasan, K. M., Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) inhibitors as hypolipidemic and antiatherosclerosis drugs. Pharm. Res. 2005, 22, 1578-1588.
64.Zhang, J.; Kelley, K. L.; Marshall, S. M.; Davis, M. A.; Wilson, M. D.; Sawyer, J. K.; Farese, R. V., Jr.; Brown, J. M.; Rudel, L. L., Tissue-specific knockouts of ACAT2 reveal that intestinal depletion is sufficient to prevent diet-induced cholesterol accumulation in the liver and blood. J. Lipid Res. 2012, 53, 1144-1152.
65.Jiao, R.; Guan, L.; Yang, N.; Peng, C.; Liang, Y.; Ma, K. Y.; Huang, Y.; Chen, Z. Y., Frequent cholesterol intake up-regulates intestinal NPC1L1, ACAT2, and MTP. J. Agric. Food Chem. 2010, 58, 5851-5857.
66.Rudel, L. L.; Lee, R. G.; Parini, P., ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1112-1118.
67.Wetterau, J. R.; Combs, K. A.; Spinner, S. N.; Joiner, B. J., Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J. Biol. Chem. 1990, 265, 9800-9807.
68.Hussain, M. M.; Rava, P.; Walsh, M.; Rana, M.; Iqbal, J., Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. (Lond.) 2012, 9, 14.
69.Vuorio, A.; Tikkanen, M. J.; Kovanen, P. T., Inhibition of hepatic microsomal triglyceride transfer protein - a novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc Health Risk Manag 2014, 10, 263-270.
70.Letteron, P.; Sutton, A.; Mansouri, A.; Fromenty, B.; Pessayre, D., Inhibition of microsomal triglyceride transfer protein: another mechanism for drug-induced steatosis in mice. Hepatology 2003, 38, 133-140.
71.Desvergne, B.; Wahli, W., Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 1999, 20, 649-688.
72.Corton, J. C.; Anderson, S. P.; Stauber, A., Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 491-518.
73.Staels, B.; Fruchart, J. C., Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 2005, 54, 2460-2470.
74.Hsu, W. H.; Chen, T. H.; Lee, B. H.; Hsu, Y. W.; Pan, T. M., Monascin and ankaflavin act as natural AMPK activators with PPARalpha agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem. Toxicol. 2014, 64, 94-103.
75.Suk, F.-M.; Lin, S.-Y.; Chen, C.-H.; Yen, S.-J.; Su, C.-H.; Liu, D.-Z.; Hou, W.-C.; Hung, L.-F.; Lin, P.-J.; Liang, Y.-C., Taiwanofungus camphoratus activates peroxisome proliferator-activated receptors and induces hypotriglyceride in hypercholesterolemic rats. Biosci. Biotechnol. Biochem. 2014, 72, 1704-1713.
76.Smith, W. L.; Langenbach, R., Why there are two cyclooxygenase isozymes. J. Clin. Invest. 2001, 107, 1491-1495.
77.Suleyman, H.; Demircan, B.; Karagoz, Y., Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep. 2007, 59, 247-258.
78.Cipollone, F.; Cicolini, G.; Bucci, M., Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol. Ther. 2008, 118, 161-180.
79.Gerke, V.; Moss, S. E., Annexins: from structure to function. Physiol. Rev. 2002, 82, 331-371.
80.Park, J. E.; Lee, D. H.; Lee, J. A.; Park, S. G.; Kim, N. S.; Park, B. C.; Cho, S., Annexin A3 is a potential angiogenic mediator. Biochem. Biophys. Res. Commun. 2005, 337, 1283-1287.
81.Watanabe, T.; Ito, Y.; Sato, A.; Hosono, T.; Niimi, S.; Ariga, T.; Seki, T., Annexin A3 as a negative regulator of adipocyte differentiation. J. Biochem. 2012, 152, 355-363.
82.Wu, N.; Liu, S.; Guo, C.; Hou, Z.; Sun, M. Z., The role of annexin A3 playing in cancers. Clin. Transl. Oncol. 2013, 15, 106-110.
83.Harashima, M.; Harada, K.; Ito, Y.; Hyuga, M.; Seki, T.; Ariga, T.; Yamaguchi, T.; Niimi, S., Annexin A3 expression increases in hepatocytes and is regulated by hepatocyte growth factor in rat liver regeneration. J. Biochem. 2008, 143, 537-545.
84.Spady, D. K.; Dietschy, J. M., Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J. Lipid Res. 1983, 24, 303-315.
85.Spady, D. K.; Bilheimer, D. W.; Dietschy, J. M., Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster. Proc. Natl. Acad. Sci. U. S. A. 1983, 80, 3499-3503.
86.Spady, D. K.; Dietschy, J. M., Rates of cholesterol synthesis and low-density lipoprotein uptake in the adrenal glands of the rat, hamster and rabbit in vivo. Biochim. Biophys. Acta 1985, 836, 167-175.
87.Arbeeny, C. M.; Meyers, D. S.; Bergquist, K. E.; Gregg, R. E., Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster. J. Lipid Res. 1992, 33, 843-851.
88.Bishop, R. W., Structure of the hamster low density lipoprotein receptor gene. J. Lipid Res. 1992, 33, 549-557.
89.Nistor, A.; Bulla, A.; Filip, D. A.; Radu, A., The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 1987, 68, 159-173.
90.Bravo, E.; Cantafora, A.; Calcabrini, A.; Ortu, G., Why prefer the golden Syrian hamster (Mesocricetus auratus) to the Wistar rat in experimental studies on plasma lipoprotein metabolism? Comp. Biochem. Physiol., B: Comp. Biochem. 1994, 107, 347-355.
91.Zhang, Z.; Wang, H.; Jiao, R.; Peng, C.; Wong, Y. M.; Yeung, V. S.; Huang, Y.; Chen, Z. Y., Choosing hamsters but not rats as a model for studying plasma cholesterol-lowering activity of functional foods. Mol. Nutr. Food Res. 2009, 53, 921-930.
92.Moghadasian, M. H.; Frohlich, J. J.; Scudamore, C. H., Specificity of the commonly used enzymatic assay for plasma cholesterol determination. J. Clin. Pathol. 2002, 55, 859-861.
93.Foxall, T. L.; Shwaery, G. T.; Stucchi, A. F.; Nicolosi, R. J.; Wong, S. S., Dose-related effects of doxazosin on plasma lipids and aortic fatty streak formation in the hypercholesterolemic hamster model. Am. J. Pathol. 1992, 140, 1357-1363.
94.Chen, T. I.; Chen, C. C.; Lin, T. W.; Tsai, Y. T.; Nam, M. K., A 90-day subchronic toxicological assessment of Antrodia cinnamomea in Sprague-Dawley rats. Food Chem. Toxicol. 2011, 49, 429-433.
95.Bucolo, G.; David, H., Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 1973, 19, 476-482.
96.Friedewald, W. T.; Levy, R. I.; Fredrickson, D. S., Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499-502.
97.Folch, J.; Lees, M.; Sloane Stanley, G. H., A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497-509.
98.Carlson, S. E.; Goldfarb, S., A sensitive enzymatic method for determination of free and esterified tissue cholesterol. Clin. Chim. Acta 1977, 79, 575-582.
99.Gallagher, S.; Winston, S. E.; Fuller, S. A.; Hurrell, J. G., Immunoblotting and immunodetection. Curr. Protoc. Mol. Biol. 2004, 10.8, 1-24
100.Ohkawa, H.; Ohishi, N.; Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351-358.
101.Grundy, S. M.; Ahrens, E. H., Jr.; Miettinen, T. A., Quantitative isolation and gas--liquid chromatographic analysis of total fecal bile acids. J. Lipid Res. 1965, 6, 397-410.
102.Vasu, V. T.; Modi, H.; Thaikoottathil, J. V.; Gupta, S., Hypolipidaemic and antioxidant effect of Enicostemma littorale Blume aqueous extract in cholesterol fed rats. J. Ethnopharmacol. 2005, 101, 277-282.
103.Lin, Y. L.; Chang, Y. Y.; Yang, D. J.; Tzang, B. S.; Chen, Y. C., Beneficial effects of noni (Morinda citrifolia L.) juice on livers of high-fat dietary hamsters. Food Chem. 2013, 140, 31-38.
104.Wu, C. C.; Lin, S. Y.; Chen, C. T.; Chang, Y. P.; Huang, Y. S.; Lii, C. K.; Yu, C. C.; Hsieh, S. L.; Chung, J. G., Differential blood lipid-lowering effects of alkylsulfonated chitosan of different molecular weights in Syrian hamsters in vivo. Mol. Med. Rep. 2012, 5, 688-694.
105.Nagao, K.; Inoue, N.; Inafuku, M.; Shirouchi, B.; Morooka, T.; Nomura, S.; Nagamori, N.; Yanagita, T., Mukitake mushroom (Panellus serotinus) alleviates nonalcoholic fatty liver disease through the suppression of monocyte chemoattractant protein 1 production in db/db mice. J. Nutr. Biochem. 2010, 21, 418-423.
106.Chou, M.-C.; Chang, R.; Hung, Y.-H.; Chen, Y.-C.; Chiu, C.-H., Antrodia camphorata ameliorates high-fat-diet induced hepatic steatosis via improving lipid metabolism and antioxidative status. J. Funct. Foods 2013, 5, 1317-1325.
107.Liu, C. H.; Huang, M. T.; Huang, P. C., Sources of triacylglycerol accumulation in livers of rats fed a cholesterol-supplemented diet. Lipids 1995, 30, 527-531.
108.Guo, F.; Huang, C.; Liao, X.; Wang, Y.; He, Y.; Feng, R.; Li, Y.; Sun, C., Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol. Nutr. Food Res. 2011, 55, 1809-1818.
109.Dai, F. J.; Hsu, W. H.; Huang, J. J.; Wu, S. C., Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters. Food Chem. Toxicol. 2013, 53, 384-391.
110.Chien, Y. L.; Wu, L. Y.; Lee, T. C.; Hwang, L. S., Cholesterol-lowering effect of phytosterol-containing lactic-fermented milk powder in hamsters. Food Chem. 2010, 119, 1121-1126.
111.Huang, H.; Xie, Z.; Boue, S. M.; Bhatnagar, D.; Yokoyama, W.; Yu, L. L.; Wang, T. T., Cholesterol-lowering activity of soy-derived glyceollins in the golden Syrian hamster model. J. Agric. Food Chem. 2013, 61, 5772-5782.
112.Connolly, B. A.; O'Connell, D. P.; Lamon-Fava, S.; LeBlanc, D. F.; Kuang, Y. L.; Schaefer, E. J.; Coppage, A. L.; Benedict, C. R.; Kiritsy, C. P.; Bachovchin, W. W., The high-fat high-fructose hamster as an animal model for niacin's biological activities in humans. Metabolism 2013, 62, 1840-1849.
113.van Heek, M.; Austin, T. M.; Farley, C.; Cook, J. A.; Tetzloff, G. G.; Davis, H. R., Ezetimibe, a potent cholesterol absorption inhibitor, normalizes combined dyslipidemia in obese hyperinsulinemic hamsters. Diabetes 2001, 50, 1330-1335.
114.Chen, Z.-Y.; Jiao, R.; Ma, K. Y., Cholesterol-lowering nutraceuticals and functional foods. J. Agric. Food Chem. 2008, 56, 8761-8773.
115.Chen, Z.-Y.; Ma, K. Y.; Liang, Y.; Peng, C.; Zuo, Y., Role and classification of cholesterol-lowering functional foods. J. Funct. Foods 2011, 3, 61-69.
116.Plat, J.; Mensink, R. P., Plant stanol and sterol esters in the control of blood cholesterol levels: mechanism and safety aspects. Am. J. Cardiol. 2005, 96, 15d-22d.
117.AbuMweis, S. S.; Jones, P. J., Cholesterol-lowering effect of plant sterols. Curr. Atheroscler. Rep. 2008, 10, 467-472.
118.Lam, C. K.; Chen, J.; Cao, Y.; Yang, L.; Wong, Y. M.; Yeung, S. Y.; Yao, X.; Huang, Y.; Chen, Z. Y., Conjugated and non-conjugated octadecaenoic acids affect differently intestinal acyl coenzyme A: cholesterol acyltransferase activity. Atherosclerosis 2008, 198, 85-93.
119.Tzang, B.-S.; Yang, S.-F.; Fu, S.-G.; Yang, H.-C.; Sun, H.-L.; Chen, Y.-C., Effects of dietary flaxseed oil on cholesterol metabolism of hamsters. Food Chem. 2009, 114, 1450-1455.
120.Guo, H. X.; Liu, D. H.; Ma, Y.; Liu, J. F.; Wang, Y.; Du, Z. Y.; Wang, X.; Shen, J. K.; Peng, H. L., Long-term baicalin administration ameliorates metabolic disorders and hepatic steatosis in rats given a high-fat diet. Acta Pharmacol. Sin. 2009, 30, 1505-12.
121.Lee, H. I.; Yun, K. W.; Seo, K. I.; Kim, M. J.; Lee, M. K., Scopoletin prevents alcohol-induced hepatic lipid accumulation by modulating the AMPK-SREBP pathway in diet-induced obese mice. Metabolism 2014, 63, 593-601.
122.Choi, W. H.; Gwon, S. Y.; Ahn, J.; Jung, C. H.; Ha, T. Y., Cooked rice prevents hyperlipidemia in hamsters fed a high-fat/cholesterol diet by the regulation of the expression of hepatic genes involved in lipid metabolism. Nutr. Res. 2013, 33, 572-579.
123.Hsu, C.-L.; Chang, Y.-Y.; Chiu, C.-H.; Yang, K.-T.; Wang, Y.; Fu, S.-G.; Chen, Y.-C., Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters. Food Chem. 2011, 127, 1146-1152.
124.Chen, I. S.; Chang, Y. Y.; Hsu, C. L.; Lin, H. W.; Chang, M. H.; Chen, J. W.; Chen, S. S.; Chen, Y. C., Alleviative effects of deep-seawater drinking water on hepatic lipid accumulation and oxidation induced by a high-fat diet. J. Chin. Med. Assoc. 2013, 76, 95-101.
125.Peng, C. H.; Liu, L. K.; Chuang, C. M.; Chyau, C. C.; Huang, C. N.; Wang, C. J., Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J. Agric. Food Chem. 2011, 59, 2663-2671.
126.Hsieh, Y. L.; Yeh, Y. H.; Lee, Y. T.; Hsieh, C. H., Ameliorative effect of Pracparatum mungo extract on high cholesterol diets in hamsters. Food Funct. 2014, 5, 149-157.
127.Ito, Y.; Watanabe, T.; Nagatomo, S.; Seki, T.; Niimi, S.; Ariga, T., Annexin A3-expressing cellular phenotypes emerge from necrotic lesion in the pericentral area in 2-acetylaminofluoren/carbon tetrachloride-treated rat livers. Biosci. Biotechnol. Biochem. 2007, 71, 3082-9.126.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊