[1]C. Anagnostopoulou and G. Westermann(1997), “Classification in Music: A Computational Model for Paradigmatic Analysis,” Proceedings of the International Computer Music Conference.
[2]S. Andrews, I. Tsochantaridis, and T. Hofmann(2003), “Support vector machines for multiple-instance learning,” In S. Thrun and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 561-568, MIT Press, Cambridg, MA.
[3]H. Berger (Author), P. Gloor (Editor) (1969), On the Electroencephalogram of Man (Electroencephalography and Clinical Neurophysiology Supplement No. 28), Elsevier Science Ltd, ISBN-10: 0444407391.
[4]E. Basar(1980), EEG Brain Dynamics, Elsevier Science, Amsterdam.
[5]E. Basar(1988), Dynamics of Sensory and Cognitive Processing by the Brain, Springer Verlag, Berlin, Germany.
[6]S. G. Blackburn and D. C. DeRoure(1998), “A Tool for Content-based Navigation of Music,” Proceedings of the ACM Multimedia, pp.361-368.
[7]S. Brecheisen, H.-P. Kriegel, P. Kunath, and A. Pryakhin(2006), “Hierarchical Genre Classification for Large Music Collections” IEEE 7th international conference on multimedia and Expo, pp. 1385-1388.
[8]B.S. Bhattacharya, D. Coyle, and L. Maguire(2010), “Thalamocortical circuitry and alpha rhythm slowing: An empirical study based on a classic computational model,” the 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1-7,18-23.
[9]W. Chai and B. Vercoe(2001), “Folk Music Classification Using Hidden Markov Models,” Proceedings of International Conference on Artificial Intelligence.
[10]Y. Chen, J. Bi, and J. Z. Wang(2006), “MILES: Multiple-instance learning via embedded instance selection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No.12, pp. 1931-1947.
[11]H. T. Cheng, Y. H. Yang, Y. C. Lin, and H. H. Chen(2008), “Automatic Chord Recognition for Music Classification and Retrieval,” IEEE International Conference on Multimedia and Expo, pp. 1505-1508.
[12]G. Davenport, T. A. Smith, and N. Pincever(1991), “Cinematic Primitives for Multimedia,” IEEE Computer Graphics & Applications, Vol. 11, No. 4, pp. 67-74.
[13]Y. F. Day, S. Pagtas, M. Iino, A. Khokhar, and A. Ghafoor(1995), “Objcet-Oriented Conceptual Modeling of Video Data,” Proceedings of the IEEE Data Engineering, pp. 401-408.
[14]R. B. Dannenberg, B. Thom, and D. Watson(1997), “A Machine Learning Approach to Musical Style Recognition,” Proceedings of International Computer Music Conference.
[15]E. A. E1-Kwae and M. R. Kabuka(2000), “Efficient Content-Based Indexing of Large Image Databases,” ACM Transaction on Information Systems, Vol. 18, No. 2, pp. 171-210.
[16]A, Gevins, A. Rémond, (Eds.)(1987), Handbook of EEG and Clinical Neurophysiology, Vol. 1: Methods of analysis of brain electrical and magnetic signals, Elsevier Science, Amsterdam, Holland.
[17]Z. Fu, G. Lu, K. M. Ting and D. Zhang(2010), “Learning Naive Bayes Classifiers for Music Classification and Retrieval,” 20th International Conference on Pattern Recognition (ICPR), pp. 4589-4592.
[18]Z. Fu, G. Lu, K. M. Ting and D. Zhang(2011), “A Survey of Audio-based Music Classification and Annotation,” IEEE Transactions on Multimedia, Vol. 13, No. 2, pp. 303-319.
[19]S. T. Goh and K. L. Tan(2000), “MOSAIC: A Fast Multi-Feature Image Retrieval System,” Data & Knowledge Engineering, Vol. 33, No. 3, pp.219-239.
[20]K. D. Goodman(2011), Music Therapy Education and Training: From Theory to Practice, Springfield, Illinois: Charles C. Thomas., ISBN 0-398-08609-5 .
[21]R. Hjelsvold, and R. Midstraum(1994), “Modeling and Querying Video Data,” Proceedings of the International Conference on VLDB, pp. 686-694.
[22]K. A. Hua, K. Vu, and J. H. Oh(1999), “SamMatch: A Flexible and Efficient Sampling-Based Image Retrieval Technique for Large Image Databases,” Proceedings of the ACM Multimedia, pp. 225-234.
[23]X. Huang, A. Acero, and H.-W. Hon(2001), Spoken Language Processing: A Guide to Theory, Algorithm and System Development, Prentice Hall.
[24]C. L. Krumhansl(1990), Cognitive Foundations of Musical Pitch, Oxford University Press, New York.
[25]C. C. Liu, J. L. Hsu, and Arbee L. P. Chen(1999), “Efficient Theme and Non-Trivial Repeating Pattern Discovering in Music Databases,” Proceedings of the IEEE Data Engineering, pp.14-21.
[26]C-R. Lin, N-H. Liu, Y-H. Wu, and A. L. P. Chen(2004), “Music Classification Using Significant Repeating Patterns,” Lecture Notes in Computer Science, Springer-Verlag, Vol. 2973, pp. 506-518.
[27]Q. J. B. Loh, and S. Emmanuel(2006), “ELM the Classification of Music Genres,” ICARCV’06. 9th International conference on Control, Automation, Robotics and Vision, pp. 1-6.
[28]Y. L. Lo, W. L. Lee, and L. H. Chang(2008), “True Suffix Tree Approach for Discovering Non-trivial Repeating Patterns in a Music Object,” Journal of Multimedia Tools and Applications, Springer, Vol. 37, No. 2, pp. 169-187.
[29]Y. L. Lo and L. Y. Tsai(2009) , “Approximate Searching for Music Data in Real-Valued Feature Indexing,” Journal of Convergence Information Technology, Vol. 4, No. 4, pp. 87-95.
[30]Y. L. Lo, C. H. Lee, and C. H. Wang(2009), “Scalable Multi-feature Index Structure for Music Databases,” Information Sciences, Elsevier, Vol.179, No 15, pp. 2662-2675.
[31]Y. L. Lo and Y. C. Lin(2010), “Content-Based Music Classification,” the 3rd IEEE International Conference on Computer Science and Information Technology , Chengdu, China, pp. 112-116 .
[32]Y. L. Lo and Y. C. Lin(2012), “Content-Based Multi-Feature Music Classification,” International Conference on Innovation and Management (IAM2012), Republic of Palau.
[33]I. Mandel, and P. W. Ellis(2008), “Multiple-Instance Learning for Music Information Retrieval,” 9th International Conference on Music Information Retrieval, pp.577-582.
[34]E. E. P. Myint and M. Pwint(2010), “An Approach for Mulit-label Music Mood Classification,” 2nd International Conference on Signal Processing Systems (ICSPS), pp. V1-290 - V1-294.
[35]E. Narmour(1990), The Analysis and Cognition of Basic Melodic Structures, The University of Chicago Press, Chicago.
[36]S. Nepal and M. V. Ramakrishna(1999), “Query Processing Issue in Image (Multimedia) Databases,” Proceedings of the International Conference on Data Engineering, pp.22-29.
[37]J. H. Oh and K. A. Hua(2000), “Efficient and Cost-Effective Techniques for Browsing and Indexing Large Video Databases,” Proceedings of the ACM SIGMOD, pp.415-426.
[38]S. W. Smoliar and H. J. Zhang(1994), “Content-Based Video Indexing and Retrieval,” IEEE Multimedia, Vol. 2, No. 1, pp. 63-75.
[39]V. N. Vapnik(1995), The Nature of Statistic Learning Theory, New York, Springer-Verlag.
[40]K. Vijayalakshmi, S. Sridhar, and P. Khanwani(2010), “Estimation of effects of alpha music on EEG components by time and frequency domain analysis,” International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, pp. 1-5, 11-13.
[41]S. Vakili, N. Tehranchian, M. Tajziehchi, and I.M. Rezazadeh, and Xiangyu Wang(2012), “An empirical study on the relations between EEG alpha-beta entropy & EQ- IQ test scores,”2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 301-304.
[42]C. Zhen and J. Xu(2010), “Multi-modal Music Genre Classification Approach,” 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), pp. 398-402.
[43]羅有隆、林奕昌(2011),「以多特徵分析為基礎之音樂資料分類」,資訊科技國際期刊,Vol 5,No 1,pp.146-157。[44]H. Gamboa(2005), “Beta Wave”, Wikipedia. http://en.wikipedia.org/wiki/Beta_wave
[45]H. Gamboa(2005), “Alpha Wave”, Wikipedia. http://en.wikipedia.org/wiki/Alpha_wave
[46]H. Gamboa(2005), “Theta Wave”, Wikipedia. http://en.wikipedia.org/wiki/Theta_wave
[47]H. Gamboa(2005), “Delta Wave”, Wikipedia. http://en.wikipedia.org/wiki/Delta_wave
[48]α波 童話音樂盒系列--宮崎駿動畫名曲集 http://www.books.com.tw/exep/cdfile.php?item=0020127497
[49]α波 童話音樂盒系列--迪士尼動畫名曲集1 http://www.books.com.tw/exep/cdfile.php?item=0020127496
[50]α波 童話音樂盒系列--迪士尼動畫名曲集2 http://www.books.com.tw/exep/cdfile.php?item=0020127498
[51]α腦波音樂對不同人群的超強幫助 http://hdmok0909.pixnet.net/blog/post/9195968-α腦波音樂對不同人群的超強幫助
[52]巴洛克音樂每分鐘60拍-和人腦放鬆而清醒時的a波頻率同步 http://bbs.gsr.org.tw/cgi-bin/printpage.cgi?forum=6&topic=50