1. 朱敬平,「產業廢水污染調查及管制措施研議計畫(第二年)」,行政院環境保護署,第241-246頁(2010)。
2. 吳俊毅、陳偉聖、黃蘭芳、蕭庭哲、申永輝、蔡敏行,「LCD 含銦廢料與廢液資源化處理技術之可行性評估」,工業污染防治,第113期,第13-49頁(2010)。
3. 林弘仁,「製備活性碳電極於電容去離子技術之應用」,碩士論文,私立東海大學環境科學與工程學系碩士班,台中(2012)。
4. 郭湯杰,「電容去離子技術去除水中銦、鎵、鉬之基礎研究」,碩士論文,私立朝陽科技大學環境工程與管理系,台中(2014)。5. 張敏超、莊順興,「水淡化用脫鹽技術的現在與未來」,環境工程會刊,第21卷,第四期,第20-27頁(2010)。
6. 許國恩、胡雁翠、朱敬平、鍾裕仁,「廢污水與再生水中新興污染物之調查及管制現況」,財團法人中興工程顧問社,第123期,第3-15頁(2014)。7. 劉柏逸,「微波輔助離子熱合成二氧化鈦/活性碳複合電極材料應用於電容脫鹽之研究」,博士論文,國立清華大學化學工程研究所,新竹(2015)。8. 蕭蘊華、傅崇德,環境工程化學,蒼海書局,台中,第288頁(2009)。
9. Abbas, Q., Pajak, D., Frąckowiak, E., Béguin, F., “ Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte,” Electrochimica Acta, Vol. 140, pp.132-138(2014).
10. AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., Hilal, N., “Application of Capacitive Deionisation in water desalination: A review,” Desalination, Vol. 342, pp.3-15(2014).
11. Anderson, M. A., Cudero, A. L., and Palma, J., “Capacitive deionization as an electrochemical means of saving energy and delivering clean water Comparison to present desalination practices: Will it compete?,” Electrochimica Acta, Vol. 55, No. 12, pp.3845-3856(2010).
12. Atanacio, A. J., Bak, T., Nowotny, J., “Effect of Indium Segregation on the Surface versus Bulk Chemistry for Indium-Doped TiO2,” ACS Applied Materials & Interfaces, Vol. 4, pp.6626-6634(2012).
13. Benjamin, M.M., Water Chemistry, McGraw-Hill, New York,(2002)。
14. Chang, L. M., Duan, X. Y., Liu, W., “Preparation and electrosorption desalination performance of activated carbon electrode with titania,” Desalination, Vol. 270, pp.285-290(2011).
15. Choi, J. Y., Choi, J. H., “A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder,” Journal of Industrial and Engineering Chemistry, Vol. 16, pp. 401-405(2010).
16. Devi, S., Ray, P., Singh, K., Singh, P. S., “Preparation and characterization of highly micro-porous PVDF membranes for desalination of saline water through vacuum membrane distillation,” Desalination, Vol. 346, pp.9-18(2014).
17. Fowler, B. A., and Nikki, M. R., “Chapter 39 – Indium,” Handbook on the Toxicology of Metals , No. 4, pp.845-853(2015).
18. Furtado, C. A., Souza, P. P., Silva, G. G., Matencio, T., Pernaut, J. M.,“Electrochemical behavior of polyurethane ether electrolytes/carbon black composites and application to double layer capacitor, ” Electrochimica Acta, Vol. 36, pp.1629-1634(2001).
19. Gao, S., Su, Y., Bao, L., Li, N., Chen, L., Zheng, Y., Tian, J., Li, J., Chen, S., Wu, F. “High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder,” Journal of Power Sources, Vol. 298, pp.292-298(2015).
20. Giera, B., Henson, N., Kober, E. M., Shell, M. S., Squires, T. M., “Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations,” Langmuir, Vol. 31, No. 11, pp.3553-3562(2015).
21. Hall, P. J., Mirzaeian, M., Fletcher, S. I., Sillars, F. B., Rennie, A. J. R., Shitta-Bey, G. O., Carter, R., “Energy storage in electrochemical capacitors: designing functional materials to improve performance,” Energy & Environmental Science, Vol. 3, No. 9, pp.1238-1251(2010).
22. Hou, C. H., and Huang, C. Y., “A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization,” Desalination, Vol. 314, pp.124-129(2013).
23. Huang, W., Zhang, Y., Bao, S., Cruz, R., Song, S., “Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes,” Desalination, Vol. 340, pp.67-72(2014).
24. Kinoshita, K., John Wiley & Sons, Inc., NY, (2007).
25. Khan, T. A., Nazir, M., Khan, E. A., and Riaz, U., “Multiwalled carbon nanotube–polyurethane (MWCNT/PU) composite adsorbent for safranin T and Pb(II) removal from aqueous solution: Batch and fixed-bed studies,” Journal of Molecular Liquids, Vol. 212, pp.467-479(2015).
26. Liu, J., Xiong, Z., Wang, S., Cai, W., Yang, J., Zhang, H., “Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization,” Electrochimica Acta, Vol. 210, pp.171-180(2016).
27. Liu, P. I., Chung, L. C., Shao, H., Liang, T. M., Horng, R. Y., Ma, C. C., Chang, M. C., “Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization,” Electrochimica Acta, Vol. 96, pp.173-179(2013).
28. Liu, P. I., Chung, L. C., Shao, H., Liang, T. M., Horng, R. Y., Chang, M. C., Ma, C. C., “Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method,” Journal of Colloid and Interface Science, Vol. 446, pp.352-358(2015).
29. Liu, P. I., Chung, L. C., Ho, C. H., Shao, H., Liang, T. M., Chang, M. C., Horng, R. Y., “Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques,” Desalination, Vol. 379, pp.34-41(2016).
30. Liu, I. H., Lin, C. W., Chang, M. C., Shao, H., Yang, C. M., “The hydrothermal analogy role of ionic liquid in transforming amorphous TiO2 to anatase TiO2: elucidating effects of ionic liquids and heating method,” Journal of Materials Science, Vol. 43, pp.5005-5013(2008).
31. Lu, G., Wang, G., Wang, P. H., Yang, Z., Yan, H., Ni, W., Yan, Y. M., “Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method,” Desalination, Vol. 386, pp.32-38(2016).
32. Mohanapriya, K., Ghosh, G., and Jha, N., “Solar light reduced Graphene as high energy density supercapacitor and capacitive deionization electrode,” Electrochimica Acta, Vol. 209, pp.719-729(2016).
33. Elena, O. C., Francisca, A. A., Ana, M. T. P., Enrique, M. P., César, O. B., “Synthesis of polyurethanes from CO2-based polyols: A challenge for sustainable adhesives,” International Journal of Adhesion & Adhesives, Vol. 67, pp.63-68(2016).
34. Park, B. H., and Choi, J. H., “Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application.” Electrochimica Acta, Vol. 55, No. 8, pp.2888-2893(2010).
35. Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P. M., “Review on the science and technology of water desalination by capacitive deionization,” Progress in Materials Science, Vol. 58, No. 8, pp.1388-1442(2013).
36. Richner, R., Müller, S. and Wokaun, A., “Grafted and crosslinked carbon black as an electrode material for double layer capacitors,” Carbon, Vol. 40, No. 3, pp.307-314(2002).
37. Tai, Z., Yan, X. and Xue, Q., “Shape-alterable and -recoverable graphene/polyurethane bi-layered composite film for supercapacitor electrode,” Journal of Power Sources, Vol. 213, pp.350-357(2012).
38. Villar, I., Roldan, S., Ruiz, V., Granda, M., Blanco, C., Menéndez, R., Santamaría, R., “Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes,” Energy & Fuels, Vol. 24, No. 6, pp. 3329-3333(2010).
39. Wang, D. W., Li, F., Liu, M., Lu, G. Q., Cheng, H. M., “3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage,” Angew Chem Int Ed Engl, Vol. 47, No. 2, pp.373-376(2008).
40. Wang, H., and Pilon, L., “Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes,” The Journal of Physical Chemistry C, Vol. 115, No. 33, pp.16711-16719(2011).
41. Yeh, C. L., Hsi, H. C., Li, K. C., and Hou, C. H., “Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio,” Desalination, Dol. 367, pp.60-68(2015).
42. Zhang, L., Wang, Y., Guo, X., Yuan, Z., Zhao, Z., “Separation and preconcentration of trace indium(III) from environmental samples with nanometer-size titanium dioxide,” Hydrometallurgy, Vol. 95, pp.92-95(2009).