|
References 1. Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation. Endocr Rev 2009; 30:624-712. 2. Knight PG, Glister C. TGF-b superfamily members and ovarian follicle development. Reproduction 2006; 132:191-206. 3. Ke FC, Chuang LC, Lee MT, Chen YJ, Lin SW, Wang PS, Stocco DM, Hwang JJ. The modulatory role of transforming growth factor β1 and androstenedione on follicle-stimulating hormone-induced gelatinase secretion and steroidogenesis in rat granulosa cells. Biol Reprod 2004; 70:1292-1298. 4. Dodson WC, Schomberg DW. The effect of transforming growth factor-b on follicle-stimulating hormone-induced differentiation of cultured rat granulosa cells. Endocrinology 1987; 120:512-516. 5. Dorrington JH, Bendell JJ, Khan SA. Interactions between FSH, estradiol-17b and transforming growth factor-b regulate growth and differentiation in the rat gonad. J Steroid Biochem Mol Biol 1993; 44:441-447. 6. Ke F-C, Fang S-H, Lee M-T, Sheu S-Y, Lai S-Y, Chen YJ, Huang F-L, Wang PS, Stocco DM, Hwang J-J. Lindane, a gap junction blocker, suppresses FSH and transforming growth factor b1-induced connexin43 gap junction formation and steroidogenesis in rat granulosa cells. J Endocrinol 2005; 184:555-566. 7. Chen YJ, Hsiao PW, Lee MT, Mason JI, Ke FC, Hwang JJ. Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFb1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. J Endocrinol 2007; 192:405-419. 8. Chen YJ, Lee MT, Yao HC, Hsiao PW, Ke FC, Hwang JJ. Crucial role of estrogen receptor-alpha interaction with transcription coregulators in follicle-stimulating hormone and transforming growth factor b1 up-regulation of steroidogenesis in rat ovarian granulosa cells. Endocrinology 2008; 149:4658-4668. 9. Fang W-L, Lee M-T, Wu L-S, Chen Y-J, Mason J, Ke F-C, Hwang J-J. CREB coactivator CRTC2/TORC2 and its regulator calcineurin crucially mediate follicle-stimulating hormone and transforming growth factor β1 upregulation of steroidogenesis. J Cell Physiol 2012; 227:2430-2440. 10. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell 2006; 124:35-46. 11. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 2004; 25:947-970. 12. Bulun SE, Sebastian S, Takayama K, Suzuki T, Sasano H, Shozu M. The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J Steroid Biochem Mol Biol 2003; 86:219-224. 13. Sánchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1896-1912. 14. Richards JS. Perspective: The ovarian follicle--A perspective in 2001. Endocrinology 2001; 142:2184-2193. 15. Kidder G, Mhawi A. Gap junctions and ovarian folliculogenesis. Reproduction 2002; 123:613-620. 16. Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, Lo YK, Sharma SC. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 2002; 57:195-220. 17. Saragüeta PE, Lanuza GM, Barañao JL. Autocrine role of transforming growth factor β1 on rat granulosa cell proliferation. Biol Reprod 2002; 66:1862-1868. 18. Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-b superfamily in the intraovarian regulation of follicular development. Hum Reprod Update 2005; 11:144-161. 19. Ingman WV, Robker RL, Woittiez K, Robertson SA. Null mutation in transforming growth factor beta1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest. Endocrinology 2006; 147:835-845. 20. Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update 2007; 13:289-312. 21. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev 2007; 28:117-149. 22. Simard J, Ricketts M-L, Gingras S, Soucy P, Feltus FA, Melner MH. Molecular biology of the 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family. Endocr Rev 2005; 26:525-582. 23. Jamnongjit M, Hammes RS. Ovarian steroids: the good, the bad, and the signals that raise them. Cell Cycle 2006; 5:1178-1183. 24. Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: Branching out from protein kinase A. Cell Sig 2006; 18:1351-1359. 25. Wayne CM, Fan H-Y, Cheng X, Richards JS. Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol Endocrinol 2007; 21:1940-1957. 26. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599-609. 27. Riccio A, Alvania RS, Lonze BE, Ramanan N, Kim T, Huang Y, Dawson TM, Snyder SH, Ginty DD. A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 2006; 21:283-294. 28. Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB, Montminy M. TORCs: transducers of regulated CREB activity. Mol Cell 2003; 12:413-423. 29. Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 2011; 12:141-151. 30. Flores JA, Veldhuis JD, Leong DA. Follicle-stimulating hormone evokes an increase in intracellular free calcium ion concentrations in single ovarian (granulosa) cells. Endocrinology 1990; 127:3172-3179. 31. Carnegie JA, Tsang BK. The calcium-calmodulin system: participation in the regulation of steroidogenesis at different stages of granulosa cell differentiation. Biol Reprod 1984; 30:515-522. 32. Tsang BK, Carnegie JA. Calcium-dependent regulation of progesterone production by isolated rat granulosa cells: effects of the calcium ionophore A23187, prostaglandin E2, dl-isoproterenol and cholera toxin. Biol Reprod 1984; 30:787-794. 33. Jayes FC, Day RN, Garmey JC, Urban RJ, Zhang G, Veldhuis JD. Calcium ions positively modulate follicle-stimulating hormone- and exogenous cyclic 3',5'-adenosine monophosphate-driven transcription of the P450(scc) gene in porcine granulosa cells. Endocrinology 2000; 141:2377-2384. 34. Takemori H, Kanematsu M, Kajimura J, Hatano O, Katoh Y, Lin XZ, Min L, Yamazaki T, Doi J, Okamoto M. Dephosphorylation of TORC initiates expression of the StAR gene. Mol Cell Endocrinol 2007; 265-266:196-204. 35. Franke TF. PI3K/Akt: getting it right matters. Oncogene 2008; 27:6473-6488. 36. Schmierer B, Hill CS. TGF[beta]-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007; 8:970-982. 37. Zhang YE. Non-Smad pathways in TGF-b signaling. Cell Res 2009; 19:128-139. 38. Teerds KJ, Dorrington JH. Immunohistochemical localization of transforming growth factor-b1 and -b2 during follicular development in the adult rat ovary. Mol Cell Endocrinol 1992; 84:R7-R13. 39. Ying S-Y, Becker A, Ling N, Ueno N, Guillemin R. Inhibin and beta type transforming growth factor (TGFβ) have opposite modulating effects on the follicle stimulating hormone (FSH)-induced aromatase activity of cultured rat granulosa cells. Biochem Biophys Res Commun 1986; 136:969-975. 40. Gitay-Goren H, Kim IC, Miggans ST, Schomberg DW. Transforming growth factor beta modulates gonadotropin receptor expression in porcine and rat granulosa cells differently. Biol Reprod 1993; 48:1284-1289. 41. Inoue K, Nakamura K, Abe K, Hirakawa T, Tsuchiya M, Matsuda H, Miyamoto K, Minegishi T. Effect of transforming growth factor β on the expression of luteinizing hormone receptor in cultured rat granulosa cells. Biol Reprod 2002; 67:610-615. 42. Gong X, McGee EA. Smad3 is required for normal follicular follicle-stimulating hormone responsiveness in the mouse. Biol Reprod 2009; 81:730-738. 43. Anttonen M, Parviainen H, Kyrönlahti A, Bielinska M, Wilson DB, Ritvos O, Heikinheimo M. GATA-4 is a granulosa cell factor employed in inhibin-α activation by the TGF-β pathway. J Mol Endocrinol 2006; 36:557-568. 44. Bennett J, Wu Y-G, Gossen J, Zhou P, Stocco C. Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology 2012; 153:2474-2485. 45. Li H, Rao A, Hogan PG. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol 2011; 21:91-103. 46. Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR, 3rd, Takemori H, Okamoto M, Montminy M. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 2004; 119:61-74. 47. Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB, Montminy M. TORCs: transducers of regulated CREB activity. Mol Cell 2003; 12:413-423. 48. Uebi T, Tamura M, Horike N, Hashimoto YK, Takemori H. Phosphorylation of the CREB-specific coactivator TORC2 at Ser307 regulates its intracellular localization in COS-7 cells and in the mouse liver. Am J Physiol Endocrinol Metab 2010; 299:E413-E425. 49. Jansson D, Ng AC-H, Fu A, Depatie C, Al Azzabi M, Screaton RA. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci USA 2008; 105:10161-10166. 50. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 2004; 14:250-260. 51. Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol 2010; 315:27-39. 52. Lazarus KA, Wijayakumara D, Chand AL, Simpson ER, Clyne CD. Therapeutic potential of liver receptor homolog-1 modulators. J Steroid Biochem Mol Biol 2012; 130:138-146. 53. Yazawa T, Inanoka Y, Mizutani T, Kuribayashi M, Umezawa A, Miyamoto K. Liver receptor homolog-1 regulates the transcription of steroidogenic enzymes and induces the differentiation of mesenchymal stem cells into steroidogenic cells. Endocrinology 2009; 150:3885-3893. 54. Saxena D, Escamilla-Hernandez R, Little-Ihrig L, Zeleznik AJ. Liver receptor homolog-1 and steroidogenic factor-1 have similar actions on rat granulosa cell steroidogenesis. Endocrinology 2007; 148:726-734. 55. Yazawa T, Inaoka Y, Okada R, Mizutani T, Yamazaki Y, Usami Y, Kuribayashi M, Orisaka M, Umezawa A, Miyamoto K. PPAR-γ coactivator-1α regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1. Mol Endocrinol 2010; 24:485-496. 56. Jeyasuria P, Ikeda Y, Jamin SP, Zhao L, de Rooij DG, Themmen APN, Behringer RR, Parker KL. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol Endocrinol 2004; 18:1610-1619. 57. Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, Murphy BD, Schoonjans K. Liver receptor homolog 1 is essential for ovulation. Genes Dev 2008; 22:1871-1876. 58. Pelusi C, Ikeda Y, Zubair M, Parker KL. Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells. Biol Reprod 2008; 79:1074-1083. 59. Falender AE, Lanz R, Malenfant D, Belanger L, Richards JS. Differential expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary. Endocrinology 2003; 144:3598-3610. 60. Park Y, Maizels ET, Feiger ZJ, Alam H, Peters CA, Woodruff TK, Unterman TG, Lee EJ, Jameson JL, Hunzicker-Dunn M. Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from Smad. J Biol Chem 2005; 280:9135-9148. 61. Britt K, Findlay J. Estrogen actions in the ovary revisited. J Endocrinol 2002; 175:269-276. 62. Rosenfeld C, Wagner J, Roberts R, Lubahn D. Intraovarian actions of oestrogen. Reproduction 2001; 122:215-226. 63. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 1999; 20:358-417. 64. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med 1999; 340:1801-1811. 65. Stein DG. Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci 2001; 24:386-391. 66. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354:270-282. 67. Stocco C. Aromatase expression in the ovary: Hormonal and molecular regulation. Steroids 2008; 73:473-487. 68. Mendelson CR, Kamat A. Mechanisms in the regulation of aromatase in developing ovary and placenta. J Steroid Biochem Mol Biol 2007; 106:62-70. 69. Britt KL, Drummond AE, Dyson M, Wreford NG, Jones MEE, Simpson ER, Findlay JK. The ovarian phenotype of the aromatase knockout (ArKO) mouse. J Steroid Biochem Mol Biol 2001; 79:181-185. 70. Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 1998; 95:6965-6970. 71. Kraemer FB. Adrenal cholesterol utilization. Mol Cell Endocrinol 2007; 265-266:42-45. 72. Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet 2009; 10:109-121. 73. Jeon H, Blacklow SC. Sturcture and physiologic function of the low-density lipoprotein receptor. Ann Rev Biochem 2005; 74:535-562. 74. Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2003; 2:517-526. 75. Connelly MA, Williams DL. SR-BI and cholesterol uptake into steroidogenic cells. Trends Endocrinol Metab 2003; 14:467-472. 76. Connelly MA. SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland. Mol Cell Endocrinol 2009; 300:83-88. 77. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA 1997; 94:12610-12615. 78. Trigatti B, Rayburn H, Viñals M, Braun A, Miettinen H, Penman M, Hertz M, Schrenzel M, Amigo L, Rigotti A, Krieger M. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci USA 1999; 96:9322-9327. 79. Jiménez LM, Binelli M, Bertolin K, Pelletier RM, Murphy BD. Scavenger receptor-B1 and luteal function in mice. J Lipid Res 2010; 51:2362-2371. 80. Miettinen HE, Rayburn H, Krieger M. Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)–deficient mice. J Clin Invest 2001; 108:1717-1722. 81. Azhar S, Luo Y, Medicherla S, Reaven E. Upregulation of selective cholesteryl ester uptake pathway in mice with deletion of low-density lipoprotein receptor function. J Cell Physiol 1999; 180:190-202. 82. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271:518-520. 83. Reaven E, Chen YD, Spicher M, Hwang SF, Mondon CE, Azhar S. Uptake of low density lipoproteins by rat tissues. Special emphasis on the luteinized ovary. J Clin Invest 1986; 77:1971-1984. 84. Azhar S, Nomoto A, Leers-Sucheta S, Reaven E. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res 1998; 39:1616-1628. 85. Reaven E, Tsai L, Azhar S. Cholesterol uptake by the 'selective' pathway of ovarian granulosa cells: early intracellular events. J Lipid Res 1995; 36:1602-1617. 86. Chapman MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res 1980; 21:789-853. 87. Soto E, Silavin SL, Tureck RW, Strauss JF. Stimulation of progesterone synthesis in luteinized human granulosa cells by human chorionic gonadotropin and 8-bromo-adenosine 3',5'- monophosphate: The effect of low density lipoprotein. J Clin Endocrinol Metab 1984; 58:831-837. 88. Azhar S, Tsai L, Medicherla S, Chandrasekher Y, Giudice L, Reaven E. Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis. J Clin Endocrinol Metab 1998; 83:983-991. 89. Illingworth DR, Kenny TA, Orwoll ES. Adrenal function in heterozygous and homozygous hypobetalipoproteinemia. J Clin Endocrinol Metab 1982; 54:27-33. 90. Illingworth DR, Lees AM, Lees RS. Adrenal cortical function in homozygous familial hypercholesterolemia. Metabolism 1983; 32:1045-1052. 91. Vergeer M, Korporaal SJA, Franssen R, Meurs I, Out R, Hovingh GK, Hoekstra M, Sierts JA, Dallinga-Thie GM, Motazacker MM, Holleboom AG, Van Berkel TJC, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med 2011; 364:136-145. 92. Reaven E, Tsai L, Spicher M, Shilo L, Philip M, Cooper AD, Azhar S. Enhanced expression of granulosa cell low density lipoprotein receptor activity in response to in vitro culture conditions. J Cell Physiol 1994; 161:449-462. 93. Heikkilä P, Arola J, Liu J, Kahri A. ACTH regulates LDL receptor and CLA-1 mRNA in the rat adrenal cortex. Endocr Rev 1998; 24:591-593. 94. Cherian-Shaw M, Puttabyatappa M, Greason E, Rodriguez A, VandeVoort CA, Chaffin CL. Expression of scavenger receptor-BI and low-density lipoprotein receptor and differential use of lipoproteins to support early steroidogenesis in luteinizing macaque granulosa cells. Endocrinology 2009; 150:957-965. 95. Bengoechea-Alonso MT, Ericsson J. SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 2007; 19:215-222. 96. Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 2008; 8:512-521. 97. Fitzpatrick SL, Richards JS. Identification of a cyclic adenosine 3',5'-monophosphate-response element in the rat aromatase promoter that is required for transcriptional activation in rat granulosa cells and R2C leydig cells. Mol Endocrinol 1994; 8:1309-1319. 98. Hinshelwood MM, Repa JJ, Shelton JM, Richardson JA, Mangelsdorf DJ, Mendelson CR. Expression of LRH-1 and SF-1 in the mouse ovary: localization in different cell types correlates with differing function. Mol Cell Endocrinol 2003; 207:39-45. 99. Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 1955; 34:1345-1353. 100. Converse CA, Skinner ER. Lipoprotein analysis: a practical approach. Oxford, UK.: IRL Press; 1992: 103-110. 101. Karpe F, Hamsten A. Determination of apolipoproteins B-48 and B-100 in triglyceride-rich lipoproteins by analytical SDS-PAGE. J Lipid Res 1994; 35:1311-1317. 102. Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Anal Biochem 1986; 159:109-113. 103. Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc 2009; 2009:pdb.prot5279. 104. Chang T-Y, Chang CCY, Ohgami N, Yamauchi Y. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 2006; 22:129-157. 105. Hu J, Zhang Z, Shen W-J, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab 2010; 7:47. 106. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89:331-340. 107. Lopez D, McLean MP. Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinology 1999; 140:5669-5681. 108. Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. 109. Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, Goldstein JL. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and insigs. J Biol Chem 2004; 279:52772-52780. 110. Schoonjans K, Annicotte JS, Huby T, Botrugno OA, Fayard E, Ueda Y, Chapman J, Auwerx J. Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep 2002; 3:1181-1187. 111. Azhar S, Cooper A, Tsai L, Maffe W, Reaven E. Characterization of apoB, E receptor function in the luteinized ovary. J Lipid Res 1988; 29:869-882. 112. Kovacs EJ, Messingham KAN, Gregory MS. Estrogen regulation of immune responses after injury. Mol Cell Endocrinol 2002; 193:129-135. 113. Michael MD, Michael LF, Simpson ER. A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol 1997; 134:147-156. 114. Tsang BK, Carnegie JA. Calcium requirement in the gonadotropic regulation of rat granulosa cell progesterone production. Endocrinology 1983; 113:763-769. 115. Parakh TN, Hernandez JA, Grammer JC, Weck J, Hunzicker-Dunn M, Zeleznik AJ, Nilson JH. Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires β-catenin. Proc Natl Acad Sci USA 2006; 103:12435-12440. 116. Brown KA, McInnes KJ, Hunger NI, Oakhill JS, Steinberg GR, Simpson ER. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res 2009; 69:5392-5399. 117. Annicotte J-S, Chavey C, Servant N, Teyssier J, Bardin A, Licznar A, Badia E, Pujol P, Vignon F, Maudelonde T, Lazennec G, Cavailles V, et al. The nuclear receptor liver receptor homolog-1 is an estrogen receptor target gene. Oncogene 2005; 24:8167-8175. 118. Bouchard MF, Taniguchi H, Viger RS. Protein kinase A-dependent synergism between GATA factors and the nuclear receptor, liver receptor homolog-1, regulates human aromatase (CYP19) PII promoter activity in breast cancer cells. Endocrinology 2005; 146:4905-4916. 119. Yeh Y-T. Molecular mechanism of follicle-stimulating hormone (FSH) and transforming growth factor (TGFb1) regulation of aromatase expression. Taipei, Taiwan: National Yang-Ming University; 2010. Thesis. 120. Velasco M, Alexander C, King J, Zhao Y, Garcia J, Rodriguez A. Association of lower plasma estradiol levels and low expression of scavenger receptor class B, type I in infertile women. Fertil Steril 2006; 85:1391-1397.
|