一、中文文獻
丁正中,2004,「消費金融信用風險研究—信用評分概述」,金融風險管理季刊。
宋杰鯤、張宇,2008,「基於粗糙集的企業財務失敗預警系統」,金融教學與研究,120期:42-44。
余尚武、劉憶瑩、周俊宏,2007,「運用類神經網路與支撐向量機於個人信用卡授信決策之研究」,永豐金融季刊,38期:131-153。周天穎,2006,「知識表達方法於影像判釋之研究-以粗糙集合理論與主成分分析為例」,逢甲大學環境資訊科技研究所碩士論文。
林芝儀,2003,「應用資料探勘於信用卡授信決策模式之實證研究」,元智大學工業工程與管理學系碩士論文。莊慶達,劉祥熹,吳明峰,2007,「台灣漁會信用部金融預警系統之研究-類神經網路模式之應用」,農業經濟叢刊,13卷1期:125-145。
俞慧華,2002,「改良式類神經網路模式於信用卡顧客關係管理之研究」,國立台北科技大學商業自動化與管理研究所碩士論文。施孟隆、游清芳、李佳珍,1999,「Logit 模式應用於信用卡信用風險審核系統之研究-以國內某銀行信用卡中心為例」,金融財務月刊,4期:85-104。黃財尉,2003,「共同因素分析與主成份分析之比較」,彰化師大輔導學報,25 期:63-86 。黃嘉興、謝永明、劉宗哲,2004,「使用Logistic迴歸模型與區別分析尋求最佳預測變數組合以建立是否違約之預測模式」,東吳經濟商學學報,48期:103-126。
陳順宇,2005,「多變量分析」(第四版),華泰文化事業股份有限公司,台北:67-141。
陳敬聰,1997,「信用卡信用風險評估之研究」,國立雲林科技大學資訊管理技術研究所碩士論文。陳承昌、史天元,2007,「粗糙集方法應用於水稻田辨識之研究」,航測及遙測學刊,12卷2期:121-131。莊瑞珠,2006,「邏輯斯迴歸模型運用在女性信用卡評分制度之研究」,輔仁管理評論,14卷1期:127-154。
曾月金,2003,「信用卡詐欺偵測模式之研究」,銘傳大學資訊管理學系碩士在職專班碩士論文。彭慧雯,2001,「建構信用卡資料挖礦架構及其實證研究」,國立台北科技大學生產系統工程與管理研究所碩士論文。詹書銘,2005,「演化式類神經網路、灰關聯分析應用於信用卡風險管理之實證研究」,朝陽科技大學財務金融學系碩士論文。張斐章、張麗秋、黃浩倫,2004,「類神經網路理論與實務」,東華書局出版社,台北。
傅粹馨,2002,「主成份分析與共同因素分析相關議題之探究」,教育與社會研究,3期:107-132。溫坤禮、永井正武、張廷政、溫惠筑,2008,「粗糙集入門及應用」,五南圖書出版股份有限公司,台北。
葉玫惠、張靖宜、廖咸興、周國端,2007,「信用卡使用者之違約風險研究-存活分析模型之應用」,金融風險管理季刊,3卷2期:1-30。葉振山、鄭景俗,2005,「強化粗糙集應用於闌尾炎之分類」,醫療資訊雜誌,14卷2期:1-16。
劉洋,2008,「粗糙集與神經網路理論在數據挖掘中的應用分析」,信息資源建設與管理,農業網路信息,9期:30-31。
錢明儀,2008,改變世界的8大創意,Cheers, 95期。蕭文卿、黃麗君、王國光,2007,「房屋抵押貸款客戶違約預測模式之比較研究」,金融風險管理季刊,3卷1期:63-82。
龔昶元,1998,「Logistic Regression 模式應用於信用卡信用風險審核之研究-以國內某銀行信用卡中心為例」,台北銀行月刊,28卷9期:35-49。
二、英文文獻
Altman, Edward I., Giancarlo Marco, & Franco Varetto, 1994, “Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience).” Journal of Banking & Finance, 18(3): 505–529.
Behr Patrick & André Güttler, 2007, Credit risk assessment and relationship lending: an empirical analysis of German small and medium-sized enterprises, Journal of Small Business Management, 45(2): 194–213.
Cattel, R.B., 1966, The scree test for the number of factors, Multivariate Behavioral Research, 1: 245-276.
Capon, N., 1982, Credit scoring systems: a critical analysis. Journal of Marketing , 46: 82–91.
Coats, Pamela K. & L. Franklin Fant, 1993, Recognizing Financial Distress Patterns Using a Neural Network Tool. The Journal of the Financial Management Association, 22(3): 142–155.
Chye Koh Hian ,Tan Wei Chin & Goh Chwee Peng, 2004, Credit scoring using data mining techniques, Singapore Management Review, 26(2): 25–47.
Desai, V. S., Crook, J. N., & Overstreet, G. A., 1996, Acomparison of neural networks and linear scoring models in the credit environment, European Journal of Operational Research, 95: 24–37.
Desai,V. S., Convay, D. G., Crook, J. N., & Overstreet, G. A., 1997, Credit scoring models in the credit union environment using neural networks and genetic algorithms, IMA Journal of Mathematics Applied in Business and Industry , 8: 323–346.
Daubie M., P. Levecq, & N. Meskens, 2002, A comparison of rough sets and recursive partitioning induction approaches : an application to commercial loans, International Transactions in Operational Research, 9(5): 681-694.
Eisenbeis, R. A., 1977, Pitfalls in the application of discriminant analysis in business, finance and economics, Journal of Finance , 32: 875–900.
Eisenbeis, R. A., 1978, Problems in applying discriminant analysis in credit scoring models, Journal of Banking and Finance,2: 205–219.
Kaiser, H.F., 1960, The application of electronic computers to factor analysis, Educ.Psychol. Meas., 20: 141-151.
Myers, J. H., & Forgy, E. W., 1963, The development of numerical credit evaluation systems, Journal of American Statistics Association, 58: 799–806.
Orgler, Y. E., 1971, Evaluation of bank consumer loans with credit scoring models,Journal of Bank Research 1: 31–37.
Pawlak, Z., 1982, Rough sets, International Journal of Computer and Information Science, 11(5) : 341-356.
Sturges, H., 1926, The choice of a class-interval. J. Amer. Statist. Assoc., 21: 65–66.
Tam, Kar Yan & Melody Y. Kiang , 1992, Managerial applications of neural networks: the case of bank failure predictions. Management Science 38(7): 926-947.
Thomas, Lyn C. 2000, A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers, International Journal of Forecasting, 16(2): 149–172.
Thomas, Lyn C., 2000, A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers, International Journal of Forecasting, 16(2): 149–172.
Wojnarski, M. 2002, Modeling the Bank Client''s Behavior with LTF-C Neural Network. EUNITE 2002 Competition, solution description.
Yao, Yiyu & Yan Zhao, 2008, Attribute reduction in decision-theoretic rough set models. Information Sciences, 178(17): 3356–3373.