|
[1] National policy foundation of Taiwan. http://www.npf.org.tw. [2] T. Ji, T. Mukherjee, W. Mun-Fei, W. Mengdi, and T. Yap-Peng. Fall incidents detection for intelligent video surveillance. In Internation Conf. on Information, Communications, and Signal Processing, 2005. [3] Community Development Quarterly. http://sowf.moi.gov.tw/19/cdj.htm. [4] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau. Robust video surveillance for fall detection based on human shape deformation. In IEEE Transactions on Circuits and Systems for Video Technology, 2011. [5] C. Rougier and J. Meunier. Demo : Fall detection using 3d head trajectory extracted from a single camera video sequence. In Journal of Telemedicine and Telecare, 2005. [6] H. Foroughi, A. Naseri, A. Saberi, and H.S. Yazdi. Approach for human fall detection using integrated time motion image and neural network. In Proceedings of Internation Conference on Signal Processing, 2008. [7] The elderly population in United State Bureau of the Census. http://www.census.gov/population/www/pop-prole/elderpop.html. [8] C. Zhang, Y. Tian, and E. Capezuti. Privacy preserving automatic fall detection for elderly using rgbd cameras. In Computers Helping People with Specail Needs Lecture Notes in Computer Science, volume 7382, pages 625-633, 2012. [9] C. Zhang. Rgb-d camera-based activity analysis. In Singal and Information Processing Association Annual Summit and Conference APSIPA ASC, pages 1-6, 2012. [10] M. Shaou-Gang, S. Pei-Hsu, and H. Chia-Yuan. A customized human fall detection system using omni-camera images and personal information. In IEEE Proceedings of the 1st Distributed Diagnosis and Home Healthcare (D2H2) Conference Arlington, Virginia, USA, pages 39-42, 2006. [11] R. Cucchiara, A. Prati, and R. Vezzani. A multi-camera vision system for fall detection and alarm generation. In Expert Systems Journal, volume 24, pages 334-345, 2007. [12] H. Nait-Charif and S. McKenna. Activity summarization and fall detection in a sup- portive home environment. In Proc. 17th ICPR, volume 4, pages 323-326, 2004. [13] K. Brewer, C. Ciolek, and M. F. Delaune. Falls in community dwelling older adults: Introduction to the problem. In APTA Continuing Education Series, pages 38-46, 2007. [14] M. Kangas, A. Konttila, P. Londgren, I. Winblad, and T. Jasmsa. Comparion of low- complexity fall detection algorithms for body attached accelerometers. In Gait Posture, volume 28, pages 285{291, 2008. [15] M. Nyan, F. E. Tay, and E. Murugasu. A wearable system for pre-impact fall detection. In Biomech, volume 41, pages 3475-3481, 2008. [16] iLife. Fall Detection Sensor [Online]. http://www.falldetection.com/ilifefds.asp. [17] Directalert. Wireless Emergency Response System [Online]. http://www.directalert.ca/emergency/help-button.php. [18] EDAO. http://www.edao.com/domicile/overview/. [19] HONcode. http://www.hon.ch/honcode. [20] Elder Falling Detection Project V FATE. http://www.project-fate.eu. [21] WiMax Home care robot. http://www.vnax.net.tw. [22] Pressure Sensitive Pad for Elder. http://www.cmuh.cmu.edu.tw/web/18910/excellence. [23] B. Toreyin, Y. Dedeoglu, and A. Cetin. Hmm based falling person detection using both audio and video. In Proc. IEEE Int. Workshop Hum.-Comput. Interaction, pages 1-4, 2005. [24] D. Anderson, J. Keller, M. Skubic, X. Chen, and Z. He. Recognizing falls from silhou- ettes. In Proc. Int. Conference IEEE EMBS, pages 6388-6391, 2006. [25] T. Lee and A. Mihailidis. An intelligent emergency response system: preliminary de- velopment and testing of automated fall detection. In J. Telemed. Telecare, volume 11, pages 194-198, 2005. [26] Homa Foroughi, Baharak Shakeri Aski, and Hamidreza Pourreza. Intelligent video surveillance for monitoring fall detection of elderly in home environments. In Proceedings of 11th International Conference on Computer and Information Technology, 2008. [27] A. Sixsmith and N. BJohnson. A smart sensor to detect the falls of the elderly. In IEEE Prevasive Computation, volume 3, pages 42-47, 2004. [28] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau. Monocular 3-d head tracking to detect falls of elderly people. In Proc. Int. Conference IEEE Eng. Med. Biol. Soc., pages 6384-6387, 2006. [29] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau. Fall detection from hu- man shape and motion history using video surveillance. In Proc. 21st Int. Conference AINAW, volume 2, pages 875-880, 2007. [30] N. Thome, S. Miguet, and S. Ambellouis. A real-time, multiview fall detection system: A lhmm-based approach. In IEEE Transaction Circuits System Video Technol., volume 18, pages 1522-1532, 2008. [31] D. Anderson, R. H. Luke, Skubic M. Keller, J. M. and, M. Rantz, and M. Aud. Linguistic summarization of video for fall detection using voxel person and fuzzy logic. In Computer Vision Image Understanding, volume 113, pages 80-89, 2009. [32] E. Auvinet, L. Reveret, A. St-Arnaud, J. Rousseau, and J. Meunier. Fall detection using multiple cameras. In Proc. 30th Annu. Int. Conference IEEE Eng. Med. Biol. Soc., pages 2554-2557, 2008. [33] L. Hazelho, J. Han, and P. H. N. de With. Video-based fall detection in the home using principal component analysis. In Proc. Advance Concepts Intelligent Vision System, volume 1, pages 298-309, 2008. [34] D. Glen, K. Peter, D. Mieke, V. Ellen, V.D.N. Jonas, D. Eddy, M. Koen, G. Toon, T. Tinne, and V. Bart. Camera based fall detection using multiple features validated with real life video. In Workshop Proceedings of the 7th International Conference on Intelligent Environments, volume 10, 2011. [35] H. Nait-Charif and S.J. McKenna. Acitivity summarisation and fall detection in a supportive home environment. In Proc. of the 17th International Conf. on Pattern Recognition, 2004. [36] M. Popescu, Y. Li, M. Skublic, and M. Rantz. An acoustic fall detector system that uses sound height information to reduce the false alarm rate. In Engineering in Medicine and Biology Society, 30th Annual International Conference of the IEEE, pages 4628-4631, 2008. [37] A. Williams, D. Ganesan, and A. Hanson. Aging in place: Fall detection and localization in a distributed smart camera network. In Proc. of the 15th international conf. on Multimedia, pages 892-901, 2007. [38] G. Diraco, A. Leone, and P. Siciliano. An active vision system for fall detection and posture recognition in elderly healthcare. In IEEE In Design, Automation and Test in Europe Conf. and Exhibition, pages 1536-1541, 2010. [39] G.L. Foresti, L. Marcenaro, and C.S. Regazzoni. Automatic detection and indexing of video-event shots for surveillance applications. In IEEE Transactions on Multimedia, pages 459-471, 2002. [40] C.J. Cohen, F. Morelli, and K.A. Scott. A surveillance system for the recognition of intent within individuals and crowds. In IEEE Conference In Technologies for Homeland Security, pages 559-565, 2008. [41] S. Mitra and T. Acharya. Gesture recognition: A survey. In IEEE Transaction on Systems, Man, and Cybernetics - part C: Applications and Reviews, pages 311{324, 2007. [42] H. Farid. Blind inverse gamma correction. In IEEE Transaction on Image Processing, volume 10, pages 1428-1433, 2001. [43] P. E. Trahanias. Color image enhancement through 3-d histogram equalization. In 11th IAPR International Conference on Image, Speech and Signal Analysis, Proceedings, pages 545-547, 1992. [44] L. Ching-Liang, T. Luo-Wei, W. Yuan-Kai, and F. Kuo-Chin. Robust face recognition under illumination and facial expression variations. In Proceedings of the Ninth Inter- national Conf. on Machine Learning and Cybernetics, Qingdao., pages 11-14, 2010. [45] Z. Rahman, D. Jobson, and G. Woodell. Retinex processing for automatic image en- hancement. In The Human Vision and Electronic Imaging VII Conf., volume 4662, pages 390-401, 2002. [46] S. S. Agaian, K. Panetta, and A. M. Grigoryan. A new measure of image enhancement. In presented at the IASTED International Conf. Signal Processing Communication, Marbella, Spain, 2000. [47] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical ow estimation. In IEEE Transactions on pattern analysis and machine intelligence, volume 34, pages 1744-1757, 2012. [48] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. In Proc. ICPR, 2004.
|