阮勝威,由靈芝子實體經萃取後之廢渣所製成之薄膜對於天竺鼠傷口及組織纖維母細胞之影響,臺北醫學大學醫學研究所碩士論文,1996。林玫秀,靈芝子實體殘渣衍生物的抗菌活性之研究,臺北醫學大學醫學研究所碩士論文,2001。劉淑慧,由靈芝子實體殘渣製成薄膜對角質細胞及MMPs之影響,臺北醫學大學醫學研究所碩士論文,2001。郭子緯,幾丁質與幾丁聚醣對革蘭氏陽性菌抑菌機轉,臺北醫學大學醫學研究所碩士論文,2002。陳盟勳,絲瓜乾瓜體纖維的幾丁質來源並應用於生物醫學材料,台北醫學大學生物醫學材料研究所碩士論文,2002。王婉如,幾丁聚醣對座瘡丙酸菌之生長及其脂酵素活性抑制之探討,台北醫學大學醫學研究所碩士論文,2004。朱祐生,幾丁聚醣抑制細菌生長之機轉,臺北醫學大學生物醫學材料研究所碩士論文,2004。林叡瑩,高濃度糖及高氧對於皮膚纖維母細胞之細胞增殖的影響,國防大學國防醫學院海底醫學研究所碩士論文,2005。陳朝澧,SACCACHITIN P10對於寵物外傷及燙傷之傷口癒合作用,台北醫學大學生物醫學材料研究所,2005
賴建達,利用雙紡錘孢子蟲草之細胞壁組成做為傷口癒合機轉之研究,台北醫學大學醫學研究所碩士論文,2005。蔡雅琪,以匍枝根黴菌液態培養菌膜作為傷口癒合生醫敷料之探討,臺北醫學大學生物醫學材料研究所論文,2005。
劉曉娟,SACCHACHITIN對角膜上皮傷口癒合之研究。臺北醫學大學生物醫學材料研究所碩士論文,2007。林士凱,利用匍枝根黴菌細胞壁組成(RHIZOCHITOSAN)結合血小板(RegenplexTM)做為創傷敷材之探討。臺北醫學大學生物醫學材料研究所碩士論文,2007。黃耀正,利用匍枝根黴菌細胞壁組成RHIZOCHITIN作為生物支架探討生物降解性及生物相容性,台北醫學大學醫學研究所碩士論文,2008。Alemdaroglu, C., Degim, Z., Celebi, N., et al. (2006). An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32(3): 319-27.
Anitua, E., Andia, I., Ardanza, B., et al. (2004). Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91(1): 4-15.
Armstrong, D. G. and Lavery, L. A. (1998). Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Physician 57(6): 1325-32, 1337-8.
Assoian, R. K., Komoriya, A., Meyers, C. A., et al. (1983). Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 258(11): 7155-60.
Baitukalova, T. A., Bogoslovskaia, O. A., Ol''khovsakaia, I. P., et al. (2005). [Regenerating activity and antibacterial effect of low-molecular-weight chitosan]. Izv Akad Nauk Ser Biol(6): 659-63.
Barry, M. (2000). How growth factors help chronic wounds heal. Nursing 30(5): 52-3.
Boulton, A. J. (1996). The pathogenesis of diabetic foot problems: an overview. Diabet Med 13 Suppl 1: S12-6.
Burnouf, T., Tseng, Y. H., Kuo, Y. P., et al. (2008). Solvent/detergent treatment of platelet concentrates enhances the release of growth factors. Transfusion 48(6): 1090-8.
Chandy, T. and Sharma, C. P. (1992). Chitosan beads and granules for oral sustained delivery of nifedipine: in vitro studies. Biomaterials 13(13): 949-52.
Chen, Y. M., Chung, Y. C., Wang, L. W., et al. (2002). Antibacterial properties of chitosan in waterborne pathogen. J Environ Sci Health A Tox Hazard Subst Environ Eng 37(7): 1379-90.
Chung, L. Y., Schmidt, R. J., Hamlyn, P. F., et al. (1994). Biocompatibility of potential wound management products: fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J Biomed Mater Res 28(4): 463-9.
Chung, Y. C. and Chen, C. Y. (2008). Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 99(8): 2806-14.
Clark R.A.F. Wound repair; overview and general considerations. In Clark, R.A.F.The Molecular and Cellular Biology of Wound Repair, 2nd edn.London: Plenum Press 1996:3-50.
Costa, T. A., Andrade, A. L., Binotto, T. E., et al. (2006). [Clinical and morphometric evaluations of the angiogenic capacity of chitosan membrane in rabbit corneas]. Arq Bras Oftalmol 69(6): 817-21.
Ding, Z., Chen, J., Gao, S., et al. (2004). Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials 25(6): 1059-67.
Engelmayer, J., Blezinger, P. and Varadhachary, A. (2008). Talactoferrin stimulates wound healing with modulation of inflammation. J Surg Res 149(2): 278-86.
Flecher, E. (1992). Foot problem in people with diabetes. Nursing Standard. 6(1):25-28.
Fujita, M., Ishihara, M., Simizu, M., et al. (2004). Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 25(4): 699-706.
Fujita, M., Ishihara, M., Shimizu, M., et al. (2007). Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen 15(1): 58-65.
Gill, S. E. and Parks, W. C. (2008). Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40(6-7): 1334-47.
Haas, A. F. (1995). Wound healing. Dermatol Nurs 7(1): 28-34, 74.
Hamilton, V., Yuan, Y., Rigney, D. A., et al. (2006). Characterization of chitosan films and effects on fibroblast cell attachment and proliferation. J Mater Sci Mater Med 17(12): 1373-81.
Harish Prashanth, K. V. and Tharanathan, R. N. (2005). Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis. Biochim Biophys Acta 1722(1): 22-9.
Heller, K., Claus, L. and Huber, J. (1959). [On the identity of plant and animal chitin.]. Z Naturforsch B 14B: 476-7.
Hung, W. S., Lai, W. F., Leu, B., et al. (2004). Effect of SACCHACHITIN on keratinocyte proliferation and the expressions of type I collagen and tissue-transglutaminase during skin wound healing. J Biomed Mater Res B Appl Biomater 70(1): 122-9.
Ishihara, M., Fujita, M., Obara, K., et al. (2006). Controlled releases of FGF-2 and paclitaxel from chitosan hydrogels and their subsequent effects on wound repair, angiogenesis, and tumor growth. Curr Drug Deliv 3(4): 351-8.
Jing, Y. J., Hao, Y. J., Qu, H., et al. (2007). Studies on the antibacterial activities and mechanisms of chitosan obtained from cuticles of housefly larvae. Acta Biol Hung 58(1): 75-86.
Karakecili, A. G., Demirtas, T. T., Satriano, C., et al. (2007). Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDS)-immobilized chitosan in serum-containing/serum-free cultures. J Biosci Bioeng 104(1): 69-77.
Knorr, D. (1984). Use of chitinous polymers in food-A challenge for food research and development. Food Technology 38(1):85-97.
Lan, C. C., Liu, I. H., Fang, A. H., et al. (2008). Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes. Br J Dermatol 159(5): 1103-15.
Ma, L., Shi, Y., Chen, Y., et al. (2007). In vitro and in vivo biological performance of collagen-chitosan/silicone membrane bilayer dermal equivalent. J Mater Sci Mater Med 18(11): 2185-91.
Mai-Ngam, K. and Chumningan, P. (2004). Antibacterial activity of chitosan under physiological conditions. Med J Malaysia 59 Suppl B: 137-8.
Masiello, P., Broca, C., Gross, R., et al. (1998). Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47(2): 224-9.
Masuoka, K., Ishihara, M., Asazuma, T., et al. (2005). The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials 26(16): 3277-84.
Matrisian, L. M. (1990). Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6(4): 121-5.
McCawley, L. J. and Matrisian, L. M. (2000). Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 6(4): 149-56.
Mehendale F.M.P., Martin P. The cellular and molecular events of wound healing. In: Falanga V, ed. Cutaneous wound healing. London: Martin Dunitz, 2001: 15–37.
Mizuno, K., Yamamura, K., Yano, K., et al. (2003). Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res A 64(1): 177-81.
Moreo, K. (2005). Understanding and overcoming the challenges of effective case management for patients with chronic wounds. Case Manager 16(2): 62-3, 67.
Mori, T., Okumura, M., Matsuura, M., et al. (1997). Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 18(13): 947-51.
Nagase, H. and Woessner, J. F., Jr. (1999). Matrix metalloproteinases. J Biol Chem 274(31): 21491-4.
Nakamura, S., Nambu, M., Ishizuka, T., et al. (2008). Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85(3): 619-27.
Nishigaki, A. (1989). Experimental studies of skin wound healing process by first intention in streptozotocin-induced diabetes mellitus rats. Shikwa Gakuho 89(4): 793-822.
Obara, K., Ishihara, M., Fujita, M., et al. (2005). Acceleration of wound healing in healing-impaired db/db mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2. Wound Repair Regen 13(4): 390-7.
Obara, K., Ishihara, M., Ishizuka, T., et al. (2003). Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24(20): 3437-44.
Phillips, T. J. and Dover, J. S. (1991). Leg ulcers. J Am Acad Dermatol 25(6 Pt 1): 965-87.
Roberts A.B., Sporn M.B.. Physiological actions and clinical applications of transforming growth factor-b (TGF-b). Growth Factors 1993;8:1–9.
Roberts A.B., Sporn M.B.. Transformimg growth factor-beta. In: The Molecular and Cellular Biology of Wound Repair (2nd ed.), edited by Clark RAF. New York: Plunum, 1996. 275-308.
Reiber, G. E. (1996). The epidemiology of diabetic foot problems. Diabet Med 13 Suppl 1: S6-11.
Sarasam, A. R., Brown, P., Khajotia, S. S., et al. (2008). Antibacterial activity of chitosan-based matrices on oral pathogens. J Mater Sci Mater Med 19(3): 1083-90.
Slovenkai, M. P. (1998). Foot problems in diabetes. Med Clin North Am 82(4): 949-71.
Snyder, R. J. (2005). Treatment of nonhealing ulcers with allografts. Clin Dermatol 23(4): 388-95.
Stanley, W. L., Watters, G. G., Chan B., et al. (1975). Lactase and other enzymes
bound to chitin with glutaraldehyde. Biotechnology and Bioengineering 17(3):315-326.
Strauss, M. B. (2005). Surgical treatment of problem foot wounds in patients with diabetes. Clin Orthop Relat Res 439: 91-6.
Su, C. H., Liu, S. H., Yu, S. Y., et al. (2005). Development of fungal mycelia as a skin substitute: characterization of keratinocyte proliferation and matrix metalloproteinase expression during improvement in the wound-healing process. J Biomed Mater Res A 72(2): 220-7.
Su, C. H., Sun, C. S., Juan, S. W., et al. (1999). Development of fungal mycelia as skin substitutes: effects on wound healing and fibroblast. Biomaterials 20(1): 61-8.
Su, C. H., Sun, C. S., Juan, S. W., et al. (1997). Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials 18(17): 1169-74.
Taha, S. M. and Swailam, H. M. (2002). Antibacterial activity of chitosan against Aeromonas hydrophila. Nahrung 46(5): 337-40.
Takehara, K. (2000). Growth regulation of skin fibroblasts. J Dermatol Sci 24 Suppl 1: S70-7.
Vincent F.. Wound healing and its impairment in the diabetic foot. Lancet. 2005. 1736-1743.
Zangaro, G. A. and Hull, M. M. (1999). Diabetic neuropathy: pathophysiology and prevention of foot ulcers. Clin Nurse Spec 13(2): 57-65; quiz 66-8.
Zhu, A. P. and Fang, N. (2005). Adhesion dynamics, morphology, and organization of 3T3 fibroblast on chitosan and its derivative: the effect of O-carboxymethylation. Biomacromolecules 6(5): 2607-14.