1.丁一賢和陳牧言 (2005)。資料探勘,滄海出版,臺中市,中華民國。
2.王以晴 (2006)。資料探勘大腸直腸癌存活分析模式之建構-類神經網路與支援向量機之應用,輔仁大學,管理研究所碩士論文,台北市。3.王秀伯 (2005)。啤酒啤酒與高濃度酒精飲料增加大腸癌的機會,醫學新知。
4.王派洲 (2006)。資料探勘概念與方法,滄海書局出版,台中市,
中華民國。
5.王濟川和郭志剛 (2003)。資料探勘,五南出版,台北市,中華民國。
6.台中慈濟醫院,癌症中心,網址:http://www.tzuchi.com.tw/a_f/f_tc/cancer_center/education4.htm
7.行政院衛生署,84~99年歷屆大腸直腸癌死亡人數統計,網址:http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=11663&class_no=440&level_no=5
8.李語嫣 (2009)。運用資料探勘技術由健康檢查與生活習慣資料建立疾病預測模型-以糖尿病為例,國立成功大學,醫學資訊研究所碩士論文,台南市。9.美國癌症協會 (2010),網址:http://www.acsccu.org/
10.留啟祐 (2008)。整合資料探勘方法應用於肝病輔助診斷,國立台北科技大學,商業自動化與管理學研究所碩士論文,台北市。11.周文賢,(2002)。多變量統計分析,智勝文化出版,台北市。
12.張芳瑜 (2008) 。利用質譜技術與計算蛋白質體學來尋找大腸直腸癌的生物標記與診斷方法,國立陽明大學,生物醫學資訊研究所碩士論文,台北市。
13.張昭威 (2009)。運用資料探勘方法建構乳癌預後模式,朝揚科技大學,工業工程與管理研究所碩士論文,台中縣。14.張智婷 (2009)。應用資料探勘技術分析惡性腫瘤病徵間之關聯法則,嶺東科技大學,資訊科技應用研究所碩士論文 ,台中市。15.郭金忠 (2005)。建立資料分類模式用以探討因子間群聚關係,雲林科技大學,工業工程與管理所碩士論文,雲林縣。16.陳之凱 (1998)。結腸直腸癌藥物Cetuximab 與K-ras gene,Vol.43。
17.陳志州 (2009) 。網址 http://thaiaochi.pixnet.net/blog/post/25633656
18.陳雪芳 (2010) 。運用資料探勘技術探討國人主要癌症之關聯性與健保醫療資源耗用之研究,輔仁大學,商學研究所博士論文,台北市。19.陳維熊,魏承生,(2008)。中西醫診-大腸癌,書泉書局出版,台北市,中華民國。
20.曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯 (2005)。資料探勘,旗標出版,臺北市
21.游雅雯 (2008)。建構大腸鏡異常發現之預測模型,雲林科技大學,工業工程與管理所碩士論文,雲林縣。22.黃椒筠 (2007)。資料探勘技術於結直腸癌患者分類模型之建構,國防醫學院,公共衛生學研究所碩士論文,台北市。23.黃聖育 (2008)。運用支援向量機、邏輯斯迴歸及決策樹於乳癌存活預測模式之建構,雲林科技大學,工業工程與管理所碩士論文,雲林縣。24.廖建彰、王心怡、林瑞雄、謝長堯、宋鴻樟 (2005)。台灣地區男性大腸癌與攝護腺篩檢狀況,台灣衛誌,24卷(3)。25.臺灣癌症臨床研究合作組織 (2008),網址:
http://www.nhri.org.tw/NHRI_WEB/nhriw2001Action.do?status=Show_Data&uid=20081208673844090000&mid=20081126544654820000&n_mk=0
26.劉易承、宋鴻樟、謝玲玲、唐瑞平、葉志清 (2008)。大腸直腸癌之風險預測模式與風險指標,台灣衛誌,27卷(1)27.鄭勝志 (2009)。應用資料探勘於醫療資源之輔助規劃研究-以子宮肌瘤手術為例,虎尾科技大學,工業工程與管理研究所碩士論文,雲林縣。28.賴明美 (2007)。癌症,要制敵於機先,中國醫訊,51卷。29.癌症防治中心,(2008)。網址:http://WWW.chimei.org.tw/top/top03/9014/old/9017/9017_3_3.htm。
30.糠榮誠,2008年4月,腸保健康談大腸直腸癌系統疾病,人醫心傳。
31.鐘明宗和葉建志 (2009)。抑癌基因SFRP家族在大腸直腸癌高度甲基化之研究,臺灣醫署,52卷(2)。
32.Olson and Yong (2008)。資料探勘,羅希爾出版,臺北縣,中華民國。
33.Akhter, M. Kuriyama, S., Nakaya, N. Shimazu, T. Ohmori, K., Nishino, Y. Tsubono, Y. Fukao, A. and Tsuji I. (2007) ‘Alcohol consumption is associated with an increased risk of distal colon and rectal cancer in Japanese men: The Miyagi Cohort Study’. EUROPEAN JOURNAL OF CANCER, 4 3:383-390
34.Balas, C.M. Koc, M.L. Tur, R. (2010) ‘Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters’. Applied Ocean Research, 32:425-433
35.Cai, C.Z. Wang, W.L, Sum, L.Z. Chen, Y.Z. (2003) ‘Protein function classification via support vector machine approach’. Mathematical Biosciences, 185:111-122
36.Chang, W.C. Lan, T.H. Ho, W.C., Lan, T.Y. (2010) ‘Factors affecting the use of health examinations by the elderly in Taiwan’. Archives of Gerontology and Geriatrics 50 Suppl. 1:511-516
37.Chen, I. W. Wang, J.H. King, T.M. Yang, F.O. Wang, H.T. (2009) ‘The Use of Ratio of Metastasis in Lymph Nodes as a Predictor of Overall Survival in Colorectal Cancer’. J Soc Colon Rectal Surgeon (Taiwan) September, Vol. 20.No. 3
38.Chen, M. Chen, L.S. Hsu, C.C. Zeng, W.R. (2008) ‘An information granulation based data mining approach for classifying imbalanced data’. Information Sciences, Vol .178, No. 16:3214-3227
39.Chen, M. S. Han, J. and Yu, P. S. (1996) ‘Data mining : an overview from a darabase perspective’. IEEE Transactions on Knowledge and Date Engineering, 8(6), pp.866-883
40.Chen, Z. Li, J. Wei, L., Xu, W. Shi, Y. (2011) ‘Multiple-kernel SVM based multiple-task oriented data mining system for gene expression data analysis’. Expert Systems with Applications
41.Dash, M. and Liu, H., (1997) ‘Feature selection for classification’. Intelligent Data Analysis, 1:131-156
42.Fadlalla, A. (2005) ‘An experimental investigation of the impact of aggregation on the performance of data mining with logistic regression’. Information & Managemen, 42:695-707
43.Gunn, S. R., (1998) ‘Support Vector Machines for Classification and Regression’. Technical Report, University of Southampton.
44.Hsu, C. W. Chang, C. C. & Lin, C. J. 2003, ‘A practical guide to support vector Classification’. Available:http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
45.Huang, M. J. Chen, M.Y. Lee, S.C. (2007) ‘Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis’. Expert Systems with Applications, 32:856-867
46.Huang, Z. Chen, H., Hsu, C.J. Chen, W.H. Wu, S. (2004) ‘Credit rating analysis with support vector machines and neural networks: a market comparative study’. Decision Support Systems, 37:543-558
47.Joaquin, P. Silvia, C. Laura, N. Olga, G. (2006) ‘Analysis of new variable selection methods for discrminant analysis’. Computational Statistics & Data Analysis, 51:1463-1478
48.Khashei, M. and Bijari, M. (2010) ‘An artificial neural network (p, d,q) model for timeseries forecasting’. Expert Systems with Applications, 37:479-489
49.Kim, K.J. and Cho, S.B. (2004) ‘Prediction of colon cancer using an evolutionary neural network’. Neurocomputing, 61:361-379
50.Kohavi, R. (1995) ‘A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection’. Appears in the International Joint Conference on Artificial Intelligence(LJCAI), pp.1137-1145
51.Lee, K. Lim, H.T. Hwang, S.S. Chae, D.W. Park, S.M. (2007) ‘Socio-economic disparities in behavioural risk factors for cancer and use of cancer screening services in Korean adults aged 30 years and older’. Public health, 124:698-740
52.Li, J. Edmund, B. Burke, R.Q. (2011) ‘Integrating neural networks and logistic regression to underpin hyper-heuristic search’. Knowledge-Based Systems, 24:322-330
53.Li, L., Tang, H., Wu, Z., Gong, J. Gruidl, M. Zou, J. Tockman, M. Clark, R.A. (2004) ‘Data mining techniques for cancer detection using serum proteomic profiling’. Artificial Intelligence in Medicine, 32:71-83
54.Lin, C. C. Ko, C.J. Liu, J.P. Lee, Y.L. Chie, W.C. (2011) ‘Nationwide periodic health examinations promote early treatment of hypertension, diabetes and hyperlipidemia in adults: Experience from Taiwan’. Public health, 125:187-195
55.Lin, S. W. and Shih, C. C. (2009) ‘PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis’. Applied Soft Computing, 9:1008-1015
56.Lin, Y.C. Chen, J.D. Lo, S.H., Chen, P.C. (2010) ‘Worksite health screening programs for predicting the development of Metabolic Syndrome in middle-aged employees: a five-year follow-up study’. BMC Public Health: 1-8
57.Pallis, A.G. Papamichael, D. Audisio, R. Peeters, M. Folprecht, G. Lacombe, D. Cutsem, E.V. (2010). ‘EORTC Elderly Task Force experts’ opinion for the treatment of colon cancer in older patients’. Cancer Treatment Reviews, 36:83–90
58.Paulo, J. L. and Azzam, F.G.T. (2006) ‘The use of artificial neural networks in decision support in cancer: A systematic review’. Neural Networks, 19:408-415
59.Ping, X. Guy, N.B. Rudolph, S.P. (2009) ‘Modified linear discriminant analysis approaches for classification of high-dimensional microarray data’. Computational Statistics & Data Analysis, 53:1674-1687
60.Saarnio, H. (1988) ‘Health examination and scientific inference in occupational health service’. Theoretical Medicine and Bioethics Volume, 9(1):89-100
61.Silva, A. Cortez, P. Santos, M.F. Gomes, L. Neves, J., (2008) ‘Rating organ failure via adverse events using data mining in the intensive care unit’. Artificial Intelligence in Medicine, 43:179-193
62.Tan, P. N. (2006). Introduction to Data Mining, Addison Wesley.
63.Yeh, C. C. (2005), ‘MS-920: DNA repair gene polymorphisms, diet and colorectal cancer risk in Taiwan’. Cancer Letters, 224: 279–288
64.Zhang, C. Fu, H. Jiang, Y. Yu, T. (2007) ‘High-dimensional pseudo-logistic regression and classification with applications to gene expression data’. Computational Statistics & Data Analysis, 52:452-470
65.Zhou, X. Liu, K.Y. Wong, S.T.C. (2004) ‘Cancer classification and prediction using logistic regression with Bayesian gene selection’. Journal of Biomedical Informatics, 37:249-259