尤崇魁,蝴蝶蘭栽培技術,園藝世界出版社(1989)。
蘇鴻傑,台灣的野生蘭,豐年出版社(1974)。
李哖、林菁敏,「溫度對白花蝴蝶蘭生長發育與開花之影響」,中
國園藝,第34卷,第1期,第223−231頁(1984)。
李哖、林菁敏,「蝴蝶蘭之花期調節」,園藝作物產期調節研討會專集,第10期,第27−44頁(1987)。
余淑美,「植物功能性基因體研究」,後基因體時代之生物技術,第41−50頁(2003)。
何慧敏,「蝴蝶蘭花粉與農桿菌共培養基因轉殖系統之建立」,碩士論文,朝陽科技大學生物技術研究所,臺中(2006)。林讚標,台灣蘭科植物,南天書局有限公司(1988)。
林育如,「光、溫度與生長調節劑對蝴蝶蘭生長與開花之影響」,碩士論文,國立台灣大學園藝學研究所,臺北(1994)。陳文輝,「蝴蝶蘭的品種改良」,科學發展,第351期,第32−39頁(2002)。
陳靖棻,「異種植物中GIGANTEA同源基因之選殖與其功能性探討」,博士論文,國立中興大學生物科技學研究所,臺中(2005)。劉耀仁、黃啟南、林厚志、方煒,「雙層充氣式蝴蝶蘭催花溫室用電量與溫度分佈調查」,國立台灣大學生物產業機電工程學系研究報告,台北(2006)。
Anzai, H., Ishii Y., Shichinohe, M., Katsumata, K., Nojiri, C., Morikawa, H., and Tanaka, M., “Transformation of Phalaenopsis by particle bombardment”, Plant Tissue Cult, Vol. 13, pp. 265-271 (1996).
Alabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., and Kay, S.A., “Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock”, Science, Vol. 293, pp. 880-883 (2001).
Ayre, B. G., and Turgeon, R., “Graft transmission of a floral stimulant derived from CONSTANS1”, Plant Physiol, Vol. 135, pp. 2271-2278 (2004).
An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., and Turnbull, C., “CONS- TANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis”, Development, Vol. 131, pp. 3615-3626 (2004).
Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T., “FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex”, Science, Vol. 309, pp. 1052-1056 (2005).
Anthura, Cultivation Guidelines Phalaenopsis Pot Plant, IMAC, Holland, pp. 1-12 (2007)
Bernier, G., Havelange, A., Houssa, C., Petitjean, A., and Lejeune, P., “Physiological Signals That Induce Flowering”, Plant Cell, Vol. 5, pp. 1147-1155 (1993).
Boss, P.K., Bastow, R.M., Mylne, J.S. and Dean, C., “Multiple pathways in the decision to flower: enabling, promoting and resetting”, Plant Cell, Vol. 16, pp. 18-31 (2004).
Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., Samach, A., and Lifschitz, E., “The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA”, Plant J, Vol. 46, pp. 462-476 (2006).
Clack, T., Matthews, S., and Sharrock, R. A., “The phytochrome apopro- tein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE”, Plant Physiol, Vol. 25, pp. 413-427 (1994).
Chen, W. S., Liu, H. Y., Liu, Z. H., Yang, L., and Chen, W. H., “Gibber- ellin and temperature influence carbohydrate content and flowering in Phalaenopsis”, Physiol Plant, Vol. 90, pp. 391-395 (1994).
Christenson, E. A. and Whitten, M. W., “Phalaenopsis bellina (Rchb.f.) Christenson, a segregate from P. violacea Witte (Orchidaceae: Aeridinae)”, Brittonia, Vol. 47, pp 57-60 (1995).
Chen, W. H., and Wang, Y.T., “Phalaenopsis orchid culture”, Taiwan- Sugar, Vol. 43, pp. 11-16 (1996).
Chen, W. S., Chang, H. W., Chen, W. H., and Lin, Y. S., “Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high tempe- rature”, HortScience, Vol. 32, pp. 1069-1073 (1997).
Chen, H. H., Liu, C. C., Chen, W. H., and Fu, Y. M., “Isolation of flower color related gene fragments from Phalaenopsis equestris”, The 16th World Orchid Conference, Vancouver, Canada, (1999).
Cai, X., Ballif, J., Endo, S., Davis, E., Liang, M., Chen, D., Dewald, D., Kreps, J., Zhu, T. and Wu, Y., “A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis”, Plant Phy siol, Vol. 145, pp. 98-105 (2007).
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Gaikountis, A., Farrona, S., Gissot, L., Turnbull, C. and Coupland, G., “FT protein movement contributes to long-distance signalling in floral induction of Arabidopsis”, Science, Vol. 316, pp. 1030-1033 (2007).
Devlin, P. F., and Kay, S. A., ”Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity”, Plant Cell, Vol. 12, pp. 2499-2509 (2000).
Doyle, M. R., Davis, S. J., Bastow, R. M., McWatters, H. G., Kozma- Bognar, L., Nagy, F., Millar, A. J., and Amasino, R. M., “The ELF 4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana”, Nature, Vol. 419, pp 74-77 (2002).
Dunford, R. P., Griffiths, S., Christodoulou, V., and Laurie, D. A., “Chara- cterisation of a barley (Hordeum vulgare L.) homologue of the Arabi- dopsis flowering time regulator GIGANTEA”, Theor Appl Genet, Vol. 110, pp. 925-931 (2005).
David, K.M., Armbruster, U., Tama, N. and Putterill, J., “Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark”, FEBS Lett, Vol. 580, pp. 1193-1197 (2006).
Evans, L. T., King, R. W., Chu, A., Mander, L. N., and Pharis, R. P., “Gibberellin structure and florigenic activity in Lolium temulentum, a long-day plant”, Planta, Vol. 182, pp 97-106 (1990).
Eimert, K., Wang, S. W., Leu, W. L. and Chen, J., “Monogenic re- cessive mutations causing 60th late floral lnitiation and excess starch accumulation in Arabidopsis”, Plant Cell, Vol. 7, pp 1703-1712 (1995).
Furuya, M., ”Phytochromes: their molecular species, gene families, and functions”, Plant Physiol, Vol. 44, pp. 617-645 (1993).
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G. and Putterill, J., “GIGANTEA: a circadian clockcontrolled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains”, EMBO J, Vol. 18, pp. 4679-4688 (1999).
Fan, S. H., Guo, A. G., Shan, L. W., and Hu, X. P., “Analysis of genetic code preference in Arabidopsis thaliana”, Prog Biochem Biophys, Vol. 30, pp. 221-225 (2003).
Fujiwara, S., Oda1, A., Kamada1, H., Coupland, G., and Mizoguchi1, T., “Circadian clock components in Arabidopsis II. LHY/CCA1 regulate the floral integrator gene SOC1 in both GI-dependent and independent path- ways,” Plant Biotechnol, Vol. 22, pp. 319-325 (2005).
Ghosh, T., “Studies on codon usage in Entamoeba histolytica,” Parasitol, Vol. 30, pp. 715-722 (2000).
Gu, W. J., Ma, M. J., Zhou, T., Sun, X., and Lu, H. Z., “Codon usage in genes coding for proteins with different stractures,” Acta Biophysica Sinica, Vol. 18, pp. 81-86 (2002).
Hill, M. O., “Reciprocal averaging : an eigenvector method of ordination”, J. Ecol, Vol. 61, pp. 237-249 (1973).
Higuchi, H., and Sakai, K., “Advancing flowering in Phalaenopsis by transferring the plants to a higher altitude during the summer”, Res. Bull. Aichi-Ken Agri. Res. Cent. B, Vol. 10, pp. 42-45 (1978).
Hsieh, R. M., Chen, W. H., Hsu, H. M., Lin, Y. S., Tsai, W. T., Fu, Y. M., Chan, M. T., and Yu, S. M., “Agrobacterium tumefaciens-mediated transfomation of Phalaenopsis orchid”, Taiwan Sugar, Vol. 155, pp. 41-45 (1997).
Huq, E., Tepperman, J. M., and Quail, P. H., “GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis”, PNAS, Vol. 97, pp 9789-9794 (2000).
Hayama, R., Izawa, T. and Shimamoto, K., “Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluo-rescent differential display method”, Plant Cell Physiol, Vol. 43, pp. 494-504 (2002).
Hsu, H. F., Huang, C. H., Chou, L. T., and Yang, C. H., “Ectopic Ex- pression of an Orchid (Oncidium Gower Ramsey) AGL6-like Gene Promotes Flowering by Activating Flowering Time Genes in Arabidopsis thaliana”, Plant Cell Physiol, Vol. 44, pp. 783-794 (2003).
Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K., “Ada- ptation of photoperiodic control pathways produces short-day flowering in rice”, Nature, Vol. 422, pp. 719-722 (2003).
Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O., “The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering”, Science, Vol. 309, pp. 1694-1696 (2005).
Hazen, S. P., Schultz, T. F., Pruneda-Paz, J. L., Borevitz, J. O., Ecker, J. R., and Kay, S. A., “LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms”, PNAS, Vol. 102, pp. 10387-10392 (2005).
Hsiao, Y. Y., Tsai, W. C., Kuoh, C. S., Kuo, H. C., Wang, H. C., Leu, Y. L., Wu, T. S., Chen, W. H., and Chen. H. H., “Identification of transcripts preferentially expressed in Phalaenopsis that were used to deduce a scent biosynthesis pathway”, BMC Plant Biology, Vol. 10, pp. 1186 (2006).
Huang, S. C., Hsiao, Y. Y., Tsai, W. C., Chen, W. H., and Chen, H. H., “Identification of genes encoding transcription factors related to scent metabolism regulation in the flowers of Phalaenopsis bellina”, Sym- posium on Frontiers of Plant Science, Abstract Book (supplemental), P8, Taipei, Taiwan (2007).
Imaizumi, T., Tran, H. G., Swartz, T. E., and Briggs, W. R., “FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis”, Nature, Vol. 426, pp. 302-306 (2003).
Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A., and Kay, S. A., “FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis”, Science, Vol. 309, pp. 293-297 (2005).
Imaizumi, T. and Kay, S.A., “Photoperiodic control of flowering: not only by coincidence”, Trends Plant Sci, Vol. 11, pp. 550-558 (2006).
Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O., and Thomashow, M. F., “ Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance”, Science, Vol. 280, pp. 104-106 (1998).
Jung, J. H., Seo, Y. H., Seo, P. J., Reyes, J. L., Yun, Ju., Chua,N. H., and Park, C. M., “The GIGANTEA-Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of CONSTANS in Arabidopsis.” Plant Cell, Vol. 19, pp. 2736-2748 (2007).
Kurepa, J., Smalle, J., Montagu, M. V., and Inze, D., “Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat”, Plant J, Vol.14, pp. 759-764 (1998).
Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., Chory, J., Harrison, M. J. and Weigel, D., “Activation tagging of the floral inducer FT”, Science, Vol. 286, pp. 1962-1965 (1999).
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T., “A pair of related genes with antagonistic roles in mediating flowering signals”, Science, Vol. 286, pp. 1960-1962 (1999).
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T. and Yano, M., “Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions”, Plant Cell Physiol, Vol. 43, pp. 1096-1105 (2002).
Kim, W. Y., Fujiwara, S., Suh, S. S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H. G. and Somers, D. E., “ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light”, Nature, Vol. 449, pp. 356-360 (2007).
Kobayashi, Y., and Weigel, D., “Move on up, it’s time for change-mobile signals controlling photoperiod-dependent flowering”, Genes Dev, Vol. 21, pp. 2371-2384 (2007).
Levy, Y. Y., and Dean, C., “The transition to flowering”, Plant Cell, Vol. 10, pp. 1973-1989 (1998).
Lin, C., “Photoreceptors and regulation of flowering time”, Plant Physiol, Vol. 123, pp. 39-50 (2000).
Lim, M. H., Kim, J., Kim, Y. S., Chung, K. S., Seo, Y. H., Lee, I., Kim, J., Hong, C. B., Kim, H. J., and Park, C. M., “A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C”, Plant Cell, Vol. 16, pp. 731-740 (2004).
Metzer, J. D., and Zeevaart, J. A. D., “Effect of photoperiod on the levels of endogenous gibberellins in spinach as measured by combined gas chro- matography-selected ion current monitoring”, Plant Physiol, Vol. 66, pp. 844-846 (1980).
McDaniel, C. N., Singer, S. R., and Smith, S. M., “Development states associated with the floral transition”, Dev. Biol, Vol. 153, pp 59-69 (1992).
Mohna, F. I., Shen, P., Jong, S. C., and Orikono, K., “Molecular evidence supports the separation of Lentinula edodes from Lentinus and related genera”, Can J Bot, Vol. 70, pp. 2446-2452 (1992).
Mumm, R. H., Hubert, L. J., and Dudley, J. W., “A classification of 148 U.S. maize inbreds: II. Validation of cluster analysis based on RFLPs”, Crop Sci, Vol. 34, pp. 852-865 (1994).
Mathews, C. K., Holde, K. E. V., and Ahern, K. G., Biochemistry. Addison Wesley Longman, Inc.USA, pp. 126-160 (2000).
Miwa, K., Serikawa, M., Suzuki, S., Kondo, T., and Oyama, T., “Con- served expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses”, Plant Cell Physiol, Vol. 47, pp. 601-612 (2006).
Mukhopadhyay, P., Basak, S., and Ghosh, T. C., “Differential selective constraints shaping codon usage pattern of housekeeping and tissue- specific homologous genes of Rice and Arabidopsis”, DNA Res, Vol. 15, pp. 347-356 (2008).
Miller, T. A., Muslin, E. H., and Dorweiler, J. E., “A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photo-periods”, Planta, Vol. 227, pp. 1377-1388 (2008).
Nelson, D. C., Lasswell, J., Rogg, L. E., Cohen, M. A. and Bartel, B., “FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis”, Cell, Vol. 101, pp. 331-340 (2000).
Onai, K., Okamoto, K., Nishimoto1, H., Morioka, C., Hirano, M., Kami- ike, N., and Ishiura, M., “Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence moni- toring system”, Plant J, Vol. 40, pp. 1-11 (2004).
Onai, K. and Ishiura, M., “PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock”, Genes Cells, Vol. 10, pp. 963-972 (2005).
Pool, H. A., and Sheehan, T. J., “Mineral nutrition of orchid roots”, in Orchid Biology: Review and Perspectives Vol II. Ed. J. Arditti. Cornell University Press, Ithaca, New York, PP. 195-212 (1982).
Persson, B., and Argos, P., “Prediction of transmembrane segments in proteins utilising multiple sequence alignments”, J Mol Biol, Vol. 237, pp. 182-192 (1994).
Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G., “The CON- STANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors”, Cell, Vol. 80, pp. 847-857 (1995).
Pineiro, M., and Coupland, G., “The control of flowering time and floral identity in Arabidopsis”, Plant Physiol, Vol. 117, pp. 1-8 (1998).
Park, D. H., Somers, D. E., Kim, Y. S., Choy, Y. H., Lim, H. K., Soh, M. S., Kim, H. J., Kay, S. A. and Nam, H. G., “Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene”, Science, Vol. 285, pp. 1579-1582 (1999).
Paltiel, J., Amin, R., Gover, A., Ori, N., and Samach, A., “Novel roles for GIGANTEA revealed under environmental conditions that modify its expression in Arabidopsis and Medicago truncatula”, Planta, Vol. 224, pp. 1255-1268 (2006).
Quail, R. H., “Phytochrome: A light-activated molecular switch that regulates plant gene expression”, Annu Rev Genet, Vol. 25, pp. 389-409 (1991).
Quesada, V., Dean, C., and Simpson, G. G., “Regulated RNA processing in the control of Arabidopsis flowering”, Int J Dev Biol, Vol. 49, pp. 773-780 (2005).
Roter, G. B., “Day length and temperature in relation to growth and flowering of orchids”, Cornell Univ Agr Exp Bull, Vol. 85, pp. 3-45 (1952).
Roter, G. B., The photoperiod and temperature responses of orchids, In: C. L. Wither (ed), The orchids-A scientific survey, NewYork, Ronald Press, p. 397-417 (1959).
Robson, F., Costa, M. M. R., Hepworth, S. R., Vizir, I., Pineiro, M., Reeves, P. H., Putterill, J., and Coupland, G., “Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants”, Plant J, Vol. 28, pp. 619-631 (2001).
Rubio, V., and Deng, X. W., “Standing on the shoulders of GIGANTEA”, Science, Vol. 318, pp. 206-207 (2007).
Runkle E., “Principles of Light”, Orchids, Vol. 77, pp. 350-353 (2008).
Sakanishi, Y., Imanishi, H., and Ishida, G., “Effect of temperature on growth and flowering of Phalaenopsis amabilis”, Bull Univ Osaka Pref Ser B, Vol. 32, pp. 1-9 (1980).
Sharp, P. M., Tuohy , T. M. F., and Mosurski, K. R., “Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes”, Nucleic Acids Res, Vol. 14, pp. 5125-5143 (1986).
Sharp, P. M., and Li, W. H., “An evolutionary perspective on synonymous codon usage in unicellular organisms”, J Mol Evol, Vol. 24, pp. 28-38 (1986).
Somers, D. E., Devlin, P. F., and Kay, S. A., “Phytochromes and crypto- chromes in the entrainment of the Arabidopsis circadian clock”, Science, Vol. 282, pp. 1488-1490 (1998).
Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I. A. and Coupland, G., “The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering”, Cell, Vol. 93, pp. 1219-1229 (1998).
Strayer, C., Oyama, T., Schultz, T. F., Raman, R., Somers, D. E., Mas, P., Panda, S., Kreps, J. A. and Kay, S. A., “Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog”, Science, Vol. 289, pp. 768-771 (2000).
Samach, A., Onouchi, H., Gold, S. E., Ditta, G. S., Schwarz-Sommer, Z., Yanofsky, M. F., and Coupland, G., “Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis”, Science, Vol. 288, pp. 1613-1616 (2000).
Su, W. R., Chen, W. S., Koshioka, M., Mander, L. N., Hung, L. S., Chen, W. H., Fu, Y. M., and Huang, K. L., “Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature con- ditions when flower development is blocked”, Plant Physiol, Vol. 39, pp. 45-50 (2001).
Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G., “CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis”, Nature, Vol. 410, pp. 1116-1120 (2001).
Su, C. F., Tsai, W. C., and Chen, H. H., “Identification of flower color regulated genes from Phalaenopsis equestris”, The 10th Symposium on Recent Advances in Cellular and Molecular Biology, Kenting, Taiwan, (2002).
Sawa, M., Nusinow, D. A., Kay, S. A. and Imaizumi, T., “FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis”, Science, Vol. 318, pp. 261-265 (2007).
Schommer, C., Palatnik, J. F., Aggarwal, P., Chetelat, A., Cubas, P., Far- mer, E. E., Nath, U., and Weigel, D., “Control of jasmonate biosynthesis and senescence by miR319 targets”, PLoS Biol, Vol. 6, pp. 230 (2008).
Takada, S., and Goto, K., “TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time”, Plant Cell, Vol. 15, pp. 2856-2865 (2003).
Tsai, W. C., Kuoh, C. S., Chuang, M. H., Chen, W. H., and Chen, H. H., “Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid”, Plant Physiol, Vol.45, pp. 831-844 (2004).
Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., Yano, M., Nishimura, M., Miyao, A., and Hirochika, H., “Distinct and coo- perative functions of phytochromes A, B, and C in the control of deetio- lation and flowering in rice”, Plant Cell, Vol. 17, No. 12, pp. 3311- 3325 (2005).
Vince-Prue, D., and Hall, D. O., “Hall international co-operation in photobiology”, Photochem Photobiol, Vol 22, pp. 77-82 (1975).
Wilson, R. N., Heckman, J. W., and Somerville, C. R., “Gibberellin is required for flowering in Arabidopsis thaliana under short days”, Plant Physiol, Vol. 100, pp. 403-408 (1992).
Wang, Y. M., “Effects of six fertilizers on vegetative growth and flo- wering of Phalaenopsis orchids ”, Sci Hort, Vol. 65, pp. 191-198 (1996).
Wang, Z. Y. and Tobin, E. M., “Constitutive expression of the CIR- CADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression”, Cell, Vol. 93, pp .1207-1217 (1998).
Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U., and Weigel, D., “Integration of spatial and temporal information during floral induction in Arabidopsis”, Science, Vol. 309, pp. 1056(2005)
Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach,
A., and Coupland, G., “CONSTANS and the CCAAT box binding
complex share a functionally important domain and interact to regulate
flowering of Arabidopsis”, Plant Cell, Vol. 18, pp. 2971-2984 (2006).
Yang, H., Wu, Y., Tang, R., Liu, D., Liu, Y., and Cashmore, A., “The c
termini of Arabidopsis cryptochromes mediate a constitutive light
response”, Cell, Vol. 103, pp. 815-827 (2000).
Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse,
T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., and Sasaki, T.,
“Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is
closely related to the Arabidopsis flowering time gene CONSTANS”,
Plant Cell, Vol. 12, pp. 2473-2484 (2000).
Yoshida, R., Fekih, R., Fujiwara, S., Oda, A., Miyata, K., Tomozoe, Y.,
Nakagawa, M., Niinuma, K., Hayashi, K., Ezura, H., Coupland, G., and
Mizoguchi, T., “Possible role of EARLY FLOWERING 3 (ELF3) in
clock-dependent floral regulation by SHORT VEGETATIVE PHASE
(SVP) in Arabidopsis thaliana”, New Phytologist, Vol. 182, pp. 838-850
(2009).
Zhang, L., and Li, W. H., “Mammalian housekeeping genes evolve more
slowly than tissue-specific gene”. Mol Biol Evol, Vol. 21, pp. 236-239
(2004).
Zhao, X. Y., Liu, M. S., Li, J. R., Guan, C. M., and Zhang, X. S., “The
wheat TaGI1, involved in photoperiodic flowering, encodes an
Arabidopsis GI ortholog”, Plant Mol Biol, Vol. 58, pp. 53-64 (2005).