|
ACI Committee 318. (2011). “Building Code Requirement for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, MI, 503 pp. ACI Committee 374. (2005). “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary,” American Concrete Institute, 9 pp. American Association of State Highway and Transportation Officials. (2011). “AASHTO Guide Specifications for LRFD Seismic Bridge Design,” 2th edition, Washington, DC, 296 pp. Ang, B. G., Priestley, M. J. N., and Paulay, T. (1989). “Seismic Shear Strength of Circular Reinforced Concrete Columns”, ACI Structural Journal, V. 86, No. 1, pp. 45-59. Benzoni, G.; Priestley, M. J. N.; and Seible, F. (2000). “Seismic Shear Strength of Columns with Interlocking Spiral Reinforcement,” 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 8 pp. Builes-Mejia, J. C., and Itani, A. (2010). “Stability of Bridge Column Rebar Cages During Construction,” Report No. CCEER-10-7, University of Nevada, Reno, Nevada. California Department of Transportation. (2003). “Bridge Design Specifications,” Engineering Service Center, Earthquake Engineering Branch, Calif., pp. 8-1 to 8-58. California Department of Transportation. (2010). “Seismic Design Criteria Version 1.6,” Engineering Service Center, Earthquake Engineering Branch, Calif., 160 pp. Correal, J. F., Saiidi, M. S., and Sanders, D. H. (2004). “Seismic Performance of RC Bridge Columns Reinforced with Two Interlocking Spirals,” Report No. CCEER-04-06, University of Nevada, Reno, Nevada, USA, 438 pp. Correal, J. F., Saiidi, M. S., Sanders, D., and El-Azazy, S. (2007a). “Shake Table Studies of Bridge Columns with Double Interlocking Spirals,” ACI Structural Journal, V. 104, No. 4, pp. 393-401. Correal, J. F., Saiidi, M. S., Sanders, D., and El-Azazy, S. (2007b). “Analytical Evaluation of Bridge Columns with Double Interlocking Spirals,” ACI Structural Journal, V. 104, No. 3, pp. 314-323. Cusson, D., and Paultre, P. (1993). “Stress-Strain Model for Confined High-Strength Concrete.” Journal of structural Engineering, ASCE , 121(3) 468-477. Dancygier, A. N. (2001). “Shear Carried by Transverse Reinforcement in Circular RC Elements,” Journal of Structural Engineering, ASCE, V. 127, No. 1, pp. 81-83. Dhakal, R. P., and Maekawa, K. (2002). “Modeling for postyield buckling of reinforcement.” Journal of structural Engineering, ASCE, 128(9) 1139-1147. Dhakal, R. P., and Maekawa, K. (2002). “Path-dependent cyclic stress-Strain relationship of reinforcing bar including buckling.” Engineering Structure, 24, 1383-1396. FEMA 356 (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC, U.S.A. Hoshikuma, J., Kawashima, K., Nagaya, K., and Taylor, A. W. (1997). ”Stress-Strain model for confined reinforced concrete in bridge piers.” Journal of structural Engineering, ASCE, 123(5), 624–633. Igase, Y., Nomura, K., Kuroiwa, T., and Miyagi, T. (2002). “Seismic Performance and Construction Method of Bridge Columns with Interlocking Spiral/Hoop Reinforcement,” Concrete Journal, V. 40, No. 2, pp. 37-46 (in Japanese). Jaafar, K. (2009). “Discrete Versus Average Integration in Shear Assessment of Spiral Links,” Canada Journal of Civil Engineering, V. 36, pp. 171-179. Kim, J. H., and Mander, J. B. (2005). “Theoretical Shear Strength of Concrete Columns Due to Transverse Steel,” Journal of Structural Engineering, ASCE, V. 131, No. 1, pp. 197-199. Mander, J. B. (1983). “Seismic design of bridge Piers.” PhD thesis, Dept. of Civil Engineering, University of Canterbury, Christchurch, New Zealand. Mander, J. B., Panthaki, F. D., and Kasalanati, A. (1994). “Low-cycle fatigue behavior of reinforcing steel.” Journal of Material and Civil Engineering, 6(4), 543-468. Mander, JB., Priestly, M.J.N.,and Park, R. (1988). “Theoretical stress-strain model for confined concrete”, Journal of structural Engineering, ASCE, 114(8), 1804-1826. McLean, D. I., and Buckingham, G. C. (1994). “Seismic Performance of Bridge Columns with Interlocking Spiral Reinforcement.” Report No. WA-RD 357.1, Washington State Transportation Center, Washington, USA, 41 pp. Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan., L.T. and Sozen, M.A. (2005). “Description of structural damage caused by the terrorist attack on the Pentagon”, Journal of Performance of Constructed Facilities, Vol. 19, No. 3, pp. 197-205. MOI. (2011). Design Specifications for Concrete Structures, Ministry of the Interior, Taiwan. Monti, G., and Nuti, C. (1992). “Nonlinear cyclic behavior of reinforcing bars including buckling.” Journal of structural Engineering, ASCE, 118(12), 3268-3284. MOTC. (2008). Seismic Bridge Design Specifications, Ministry of Transportation and Communications, Taiwan. Murphy, L.M. (1973). “San Fernando, California, Earthquake of February 9, 1971,” Department of Commerce, Washington, D. C, USA. Nilson, A. H., Darwin, D., and Dolan, C. W. (2010). “Design of Concrete Structures,” 14th Edition, McGraw-Hill, New York, 795 pp. Park, R., and Paulay, T. (1975). “Reinforced Concrete Structures.” John Wiley and Sons, New York-London-Sydney-Toronto. Priestley, M. J. N., Verma, R., and Xiao, Y. (1994). “Seismic Shear Strength of Reinforced Concrete Columns,” Journal of the Structural Engineering, ASCE, V. 120, No. 8, pp. 2310-2329. Razvi, S. R., and Saatcioglu, M. (1999). “Confinement model for high-strength concrete.” Journal of structural Engineering, ASCE, 125(3), 281-289. Saatcioglu, M., and Razvi, S. R. (1992). “Strength and ductility of confined concrete.” Journal of structural Engineering, ASCE, 118 (6) 1590-1607. Sezen, H. (2002). “Seismic Behavior and Modeling of Reinforced Concrete Building Columns,” PhD Thesis, Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California. Sezen, H., and Moehle, J. P. (2004). “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, V. 130, No. 11, pp. 1692-1703. Tanaka, H., and Park, R. (1993). “Seismic Design and Behavior of Reinforced Concrete Columns with Interlocking Spirals,” ACI Structural Journal, V. 90, No. 2, pp. 192-203. Weng, C. C., Yin, Y. L., Wang, J. C, and Liang, C. Y. (2008). “Seismic cyclic loading test of SRC columns confined with 5-spirals”. Sci China Ser E-Tech Sci, 51(5), pp.529-555. Wight, J. K., and MacGregor, J. G. (2012). “Reinforced Concrete Mechanics and Design,” 6th Edition, Pearson Education, Upper Saddle River, New Jersey 07458, 1157 pp. Yin, S. Y. L., Wang, J. C., and Wang, P. H. (2012). “Development of Multi-spiral Confinements in Rectangular Columns for Construction Automation,” Journal of the Chinese Institute of Engineers, V. 35, No. 3, pp. 309-320. Yin, S. Y. L., Wu, T. L., Liu, T. C., Sheikh, S. A., and Wang, R. (2011). “Interlocking Spiral Confinement for Rectangular Columns,” ACI Concrete International, V. 33, No. 12, pp. 38-45.
|