中文部分:
王鼎銘(2012)。類別依變項的迴歸模型。出自瞿海源、畢恆達、劉長萱、楊國樞主編,社會行為及行為科學研究法(三)資料分析(pp.85-130)。台北:東華書局股份有限公司。
江豐富(2012)。台灣公私部門薪資差異問題之研究,中央研究院經濟所學術研討論文IEAS Working Paper , No.12-A012.
何秀雲(2013)。探討工作時數對於工作壓力、工作滿意度與自覺健康狀況之影響。嘉南大學醫務管理學研究所碩士論文。吳宣蓓(2011)。工時變遷與過長工時對健康的影響。臺灣大學健康政策與管理研究所碩士論文 。車品覺(2014)。大數據的關鍵思考一書。台北:天下雜誌股份有限公司。
周育蓁(2013)。婚姻對女性薪資的影響─以台灣勞動婦女為例。國立中央大學產業經濟研究所碩士論文,桃園市。林惠彥,陸洛,陸昌勤(2014)。人際壓力與工作滿足及身心健康之關聯:以華人因應策略為調節變項。商略學報,6(1),057-072。邱皓政(2008)。量化研究法(一):研究設計與資料處理(2014年再版)。台北:雙葉書廊有限公司。
俞依良,楊南屏,詹前隆(2012)。比較決策樹演算法與邏輯迴歸模式評估事故傷害就醫之相關因子。北市醫學雜誌,9(1),30-44。城田真琴,鍾慧真、梁世英譯(2013)。大數據的獲利模式。台北:經濟新潮社。
姚昌辰(2014)。以最小平均平方學習法增強貝氏分類器之研究。國立台灣科技大學電機工程研究所碩士論文,台北市。徐美、陳明郎(2011)。臺灣不同族群薪資差異的世代變遷。臺灣經濟預測與政策,42, 39-74。張昌吉(1992)。我國勞工薪資所得與決定因素之分析,政大勞動學報,1,111-126。張嘉鑠(2013)。運用資料探勘技術探討顧客價值與消費行為之研究─以零售業連鎖專賣店為例。國立臺北大學企業管理研究所碩士論文,新北市。許榮傑(2008)。應用羅吉斯迴歸模型與決策樹建置信用評分卡。輔仁大學應用統計學研究所碩士論文,新北市。陳建良、陳昱彰(2010)。台灣男性的婚姻溢酬:以內生性選擇模型探討。經濟研究, 46,171-216。
曾仁人(2013)。資料採礦在網路消費行為預測模型之應用。國立政治大學統計研究所碩士論文,台北市。
游子璇(2014)。應用資源向量機、K個最鄰近法與羅吉斯迴歸於醫療診斷。國立勤益科技大學工業工程與管理研究所碩士論文,台中市。黃 婷(2013)。應用資料探勘技術於教師教學評量之研究。銘傳大學應用統計資訊學研究所碩士論文,台北市。
黃俊揚(2009)。甜蜜的負擔!?探究台灣的[單身寄生族]。國立成功大學政治經濟研究所碩士論文。楊亮梅(1993)。中年女性身體活動狀況及健康體能與血脂肪之比較研究。國立臺灣師範大學體育研究所碩士論文,台北市楊榮昌(2014)。高齡者運動健康信念,運動參與動機,運動承諾與活躍老化行為關係之研究。國立高雄師範大學成人教育研究所碩士論文,高雄市。
廖述賢,溫志皓(2009)。資料採礦與商業智慧。台北:雙葉書廊有限公司。
廖述賢,溫志皓(2012)。資料探勘理論與應用。新北:博碩文化股份有限公司。
蔡建成(2007)。運用資料探勘技術進行選股決策。國立高雄應用科技大學商務經營研究所碩士論文,高雄市。鄧詠心(2011)。婚姻狀態與健康之探討─台灣實證研究。國立臺北大學財政學系研究所碩士論文。鄭如筠(2012)。訊息影響力預測:使用 Facebook 資料為例。國立中央大學資訊管理學研究所碩士論文,桃園市。鍾寶惜(2012)。成年人的婚姻狀況、社會支持與身心健康之研究。中國文化大學生活應用科學系碩士在職專班,台北市。
簡禎富、許嘉裕(2014)。資料挖礦與大數據分析。新北:前程文化事業股份有限公司。
英文部分:
Augustin, S., Muntaner, L., Altamirano, J. T., González, A., Saperas, E., Dot J, Abu-Suboh M, Armengol JR, Malagelada JR, Esteban R, &; Guardia J, Genescà J (2009). Predicting early mortality after acute variceal hemorrhage based on classification and regression tree analysis. Clinical Gastroenterology and Hepatology, 7(12),1347-1354.
Austin, P. C., Tu, J. V., &; Lee, D. S. (2010). Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure. Journal of Clinical Epidemiology, 63(10), 1145-1155.
Avellar, S., &; Smock, P. (2003). Has the price of motherhood declined over time? A cross-cohort comparison of the motherhood wage penalty. Journal of Marriage and the Family, 65, 597-607.
Becker, G. S. (1985). The allocation of effort, specific human capital, and the differences between men and women in earning and occupation, Journal of Labor Economics, 3, S33-S58.
Bergmann, B. R., &; Darity, W. A. (1981). Social relations in the workplace and employer discrimination, Proceedings of the Thirty-Third Annual Meetings of the Industrial Relations Research Association , University of Wisconsin, Madison,155-62.
Berry, M. J. &; Linoff, G., (1997). Data Mining Techniques for Marketing. New Jersey, NJ:Wiley Press.
Blas, E., Sommerfeld, J., &; Kurup, A. S. (2011). Social determinants approaches to public health. Geneva, CH:World Health Organization.
Blaug, M. (1972). The correlation between education and earning: What does it signify? Higher Education, 1, 54.
Braun, A., Fernandez-Steeger, T., Havenith, H. B., &; Torgoev, A. (2015). Landslide Susceptibility Mapping with Data Mining Methods—a Case Study from Maily-Say, Kyrgyzstan. Engineering Geology for Society and Territory, 2, 995-998.
Breiman, L., Friedman, J., Stone,C.J., &; Olshen, R. A. (1984). Classification and Regression trees. Florida, FL: CRC press.
Camdeviren, H. A., Yazici, A. C., Akkus, Z., Bugdayci, R., &; Sungur, M. A. (2007). Comparison of logistic regression model and classification tree: An application to postpartum depression data. Expert Systems with Applications, 32(4), 987-994.
Chan, P. K., Fan, W., Prodromidis, A. L., &; Stolfo, S. J. (1999). Distributed data mining in credit card fraud detection. Intelligent Systems and their Applications, IEEE, 14(6), 67-74
Chang, C. L., &; Chen, C. H. (2009). Applying decision tree and neural network to increase quality of dermatologic diagnosis. Expert Systems with Applications, 36(2), 4035-4041.
Chao, C. M., Yu, Y. W., Cheng, B. W., &; Kuo, Y. L. (2014). Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree. Journal of Medical Systems, 38(10), 1-7.
Curt, H. (1995). The devil’s in the detail: Techniques, Tools, and Applications for Database Mining and Knowledge discovery-Part 1. Intelligent Software Strategies, 6(9), 1-15.
Delen, D., Kuzey, C., &; Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10),3970-3983.
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., &; Uthurusamy, R. (Eds.) (1996). Advances in knowledge discovery and data mining. Cambridge, MA: The MIT press.
Gangl, M., &; Ziefle, A. (2009). Motherhood, labor force behavior, and women’s careers: An empirical assessment of the wage penalty for motherhood in Britain, Germany, and the United States. Demography, 46, 341-69.
Glauber, R. (2007). Marriage and the motherhood wage penalty among African Americans, Hispanics, and Whites. Journal of Marriage and the Family, 69, 951-61.
Grupe, F. H., &; Mehdi Owrang, M. (1995). Data base mining discovering new knowledge and competitive advantage. Information System Management, 12(4), 26-31.
Han, J., Kamber, M., &; Pei, J. (2000). Data mining: Concepts and Techniques. Burlington, Ma: Morgan Kaufmann Publishers.
Handan, A.C., Ayse, C.Y., Zeki, A., Resul, B., &; Mehmet, A.S. (2007). Comparison of logistic regression model and classification tree: An application to postpartum depression data. Expert Systems with Applications, 32(4), 987-994.
He, J., Hu, H. J., Harrison, R., Tai, P. C., &; Pan, Y. (2006). Transmembrane segments prediction and understanding using support vector machine and decision tree. Expert Systems with Applications, 30(1), 64-72.
Hersch, J., &; Stratton, L. (1997). housework, fixed effects, and wages of married workers. Journal of Human Resources, 32, 285-307.
Im, J., &; Jensen, J. R. (2005). A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sensing of Environment, 99(3), 326-340.
Jian, T., Yueming, H., Changwei, W., &; Jianmin, L. (2007). Application of evaluation in farmland with decision tree model based on clustering. Transactions of the Chinese Society of Agricultural Engineering, 12, 58-62.
Keim, D. A., Panse, C., Sips, M., &; North, S. C. (2004). Pixel based visual data mining of geo-spatial data. Computers &; Graphics, 28(3), 327-344.
Kohavi, R., &; John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273-324.要
Korenman, S., &; Neumark, D. (1991). Marriage, motherhood, and wages. Journal of Human Resources. 27, 233-255.
Liu, H., &; Motoda, H. (1998). Feature selection for knowledge discovery and data mining. Berlin, Heidelberg: Springer Science &; Business Media.
Loh, W. Y., &; Shih, Y. S. (1997). Split selection methods for classification trees. Statistica Sinica, 7(4), 815-840.
Ma, C. M., Chao, C. M., &; Cheng, B. W. (2012). Predicting patients at risk of acute renal ailure in intencitive care units by using artificial intelligence tools. International Journal of Organizational Innovation, 5(2), 232.
Meng, X. H., Huang, Y. X., Rao, D. P., Zhang, Q., &; Liu, Q. (2013). Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. TheKaohsiung Journal of Medical Sciences, 29(2), 93-99.
Merriman, K. K. (2014). The psychological role of pay systems in choosing to work more hours. Human Resource Management Review, 24, 67-79.
Mincer, J. (1974). Schooling, Experience, and Earnings. New York: Columbia University Press.
Mladenić, D., &; Grobelnik, M. (2003). Feature selection on hierarchy of web documents. Decision Support Systems, 35(1), 45-87.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Quinlan, J. R. (1990). Decision trees and decision-making. Systems, Man and Cybernetics, IEEE Transactions on, 20(2), 339-346.
Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA: Elsevier.
Quinlan, J. R. (1996). Improved use of continuous attributes in C4. 5. Journal of Artificial Intelligence Research, 4, 77-90.
Resul, Das. (2010). A comparison of multiple classification methods for diagnosis of arkinson disease. Expert Systems with Applications, 37(2), 1568-1572.
Upadhayay, A., Shukla, S., &; Kumar, S. (2012). Empirical Comparison by data mining Classification algorithms (C4.5 &;C5.0) for thyroid cancer data set. International Journal of Computer Science &; Communication Networks, 3(1), 64-68.
Wang, M., Gao, K., Wang, L. J., &; Miu, X. H. (2012). A novel hyperspectral classification method based on C5.0 decision tree of multiple combined classifiers. In omputational and Information Sciences (ICCIS), 373-376.