|
1. Andrew, G. and Gao, J. (2007) Scalable training of L1-regularized log-linear models, International Conference on Machine Learning, 2007. 2. Bikel, D.M., Miller, S., Schwartz, R., and Weischedel, R. (1997) Nymble: a High-Performance Learning Name-finder, Proceedings of the Fifth Conference on Applied Natural Language Processing, 194-201. 3. Borkar, V., Deshmukh, K., and Sarawagi, S. (2001) Automatic segmentation of text into structured records, Proceedings of the 2001 ACM SIGMOD international conference on Management of data. 4. Center for History and New Media (2009) Zotero. http://www.zotero.org/, George Mason University. 5. Chen, S.F. (1998) An Empirical Study of Smoothing Techniques for Language Modeling, Technical Report, Computer Science Group, Harvard University, TR-10-98. 6. Covington, M.A. (2003) ET: an Efficient Tokenizer in ISO Prolog, Technical report, The University of Georgia, February. 7. Cowie, J. and Lehnert, W. (1996) Information extraction. Communications of the ACM, 39, 80-91. 8. Dugad, R. and Desai, U.B. (1996) A Tutorial on Hidden Markov Models. Technical Report No.: SPANN-96.1, May. 9. Feldman, R. and Sanger, J. (2007) The Text Mining Handbook, Cambridge University Press. 10. Freitag, D. (1998). Information Extraction from HTML - Application of a General Machine Learning Approach. Proceedings of the Fifteenth National Conference on Artificial Intelligence, 517-523. 11. Freitag, D. and Mccallum, A.K. (1999) Information Extraction with HMMs and Shrinkage, Proceedings of the AAAI-99 Workshop on Machine Learning for Information Extraction, 31-36. 12. Gale, W.A. and Church, K.W. (1994) What's wrong with adding one? In N. Oostdijk and P. de Haan, editors, Corpus-Based Research into Language. Rodolpi, Amsterdam. 13. Hetzner, E. (2004) A Simple Method for Citation Metadata Extraction using Hidden Markov Models, JCDL '08 Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries 14. Jeffreys, H. (1948) Theory of Probability. Clarendon Press, Oxford, second edition. 15. Johnson, W.E. (1932) Probability: deductive and inductive problems. Mind, 41, 421-423. 16. Kohavi, R. and Provost, F. (1998) Glossary of Terms. Editorial for the Special Issue on Applications of Machine Learning and the Knowledge Discovery Process, 30. 17. Kupiec, J., Pedersen, J., and Chen, F. (1995) A Trainable Document Summarizer. Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval. 18. Lidstone, G.J. (1920) Note on the general case of the Bayes-Laplace formula for inductive or a posteriori probabilities. Transactions of the Faculty of Actuaries, 8, 182-192. 19. Moens, M. (2006) Information Extraction: Algorithms and Prospects in a Retrieval Context, Springer. 20. Porter, M.F. (1980) An Algorithm for Suffix Stripping. Program, 14(3): 130–137 21. Qi, Y., Kiksa, P., Collobert, R., Sadamasa, K., Kavukcuoglu, K., and Weston, J. (2009) Semi-supervised sequence labeling with self-learned features. International Conference on Data Mining, 428-437. 22. Rabiner, L.R. (1989), A Tutorial on Hidden Markov Model and Selected Applications in Speech Recognition, Proceedings of the IEEE, 257-286. 23. Ram, A. and Moorman, K. (1999) Understanding language understanding: computational models of reading, MIT Press, Cambridge, MA. 24. Ramage, D. (2007) Hidden Markov Model Fundamentals, Machine Learning, Course Materials, Section notes 5. 25. Schmid, H. (2008), Tokenizing, In Anke Lüdeling and Merja Kytö, editors: Corpus Linguistics, An International Handbook. Mouton de Gruyter, Berlin. 26. Seymore, K., Mccallum, A., and Rosenfeld, R. (1999) Learning Hidden Markov Model Structure for Information Extraction. AAAI 99 Workshop on Machine Learning for Information Extraction 27. Shen, D., Sun, J., Yang, Q., and Chen, Z. (2007) Document summarization using conditional random fields. International Joint Conference on Artificial Intelligence, 2007, 2862-2867. 28. Turmo, J., Ageno, A., and Català, N. (2006) Adaptive information extraction, ACM Computing Surveys, 38, 10-47. 29. U.S. Government Printing Office (2008), U.S. Government Printing Office Style Manual, 30. 30. Viterbi, A.J. (2002)x Error bounds for convolution codes and asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13 (2): 260–269. 31. Warakagoda, N.D. (1996) A hybrid ANN-HMM asr system with nn based adaptive preprocessing, Master's thesis, Institutt for Teleteknikk, Transmisjonsteknikk. 32. Yang, H., Onda, N., Kashimura, M., and Ozawa, S. (1999) Extraction of bibliography information based on image of book cover, Image Analysis and Processing, 1999. 33. Yin, P., Zhang, M., Deng, Z.H., and Yang, D.Q. (2005) Metadata Extraction from Bibliographies Using Bigram HMM, Lecture Notes in Computer Science, 2005, Volume 3334, Digital Libraries: International Collaboration and Cross-Fertilization, Pages 1-14 34. Zhang, M., Yang, D., Deng, Z.H., Feng, Y., Wang, W., Zhao, P., Wu, S., Wang, S., and Tang, S.W. (2004) PKUSpace: A Collaborative Platform for Scientific Researching, Advances in Web-Based Learning – ICWL 2004, Lecture Notes in Computer Science, Volume 3143/2004, 245-260. 35. 蕭文峰, 何偉豪, and 李姵璇. (2007), PDF書目資料擷取系統之建置, Proceedings of International Conference on Information Management.
|