|
[1] B. Bruegmann. Monte carlo go. 1993. [2] B. E. Childs , J. H. Brodeur and L. Kocsis "Transpositions and move groups in Monte Carlo tree search", Proc. IEEE Symp. Comput. Intell. Games, pp.389 -395 2008 [3] Berliner, H. J.: Chess as Problem Solving: The Development of a Tactics Analyzer. Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, (1974) [4] Borsboom, J., Saito, J., Chaslot, G., and Uiterwijk, J., A comparison of Monte-Carlo methods for Phantom Go, Proc. 19th Belgian–Dutch Conference on Artificial Intelligence (BNAIC), Utrecht, The Netherlands, 2007. [5] Bouzy, B. and Helmstetter, B. (2003). “Monte-Carlo Go Developments” , in H. J. van den Herik, H. Iida and E. A. Heinz (eds.), Proceedings of the 10th Advances in Computer Games Conference (ACG-10) (Kluwer Academic), pp. 159–174. [6] Bouzy, Bruno and Cazenave, Tristan (2001). Computer Go: An AI oriented survey, Artificial Intelligence 132, pp. 39-103. [7] Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S., A survey of Monte Carlo Tree Search, IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, 2012. [8] C.-W. Chou , O. Teytaud and S.-J. Yen "Revisiting Monte-Carlo tree search on a normal form game: NoGo", Proc. Appl. Evol. Comput., pp.73 -82 2011 [9] Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J., and Bouzy, B., Progressive strategies for Monte-Carlo Tree Search, New Mathematics and Natural Computation, vol.4, no. 3, pp. 343–357, 2008. [10] Chen, B.-N., Shen, B.-J., and Hsu, T.-s., Chinese Dark Chess, ICGA Journal. vol. 33, No.2, pp. 93–106, 2010. [11] Chen, J.-C., Lin, T.-Y., Hsu, S.-C., and Hsu, T.-s., Design and Implementation of Computer Chinese Dark Chess Endgame Database, Proceeding of TCGA Workshop 2012, pp. 5-9, Hualien, Taiwan, 2012. (in Chinese) [12] Chou, C.-W., Yen, S.-J., and Wu, I-C., TAAI 2011 Computer Go Tournaments, ICGA Journal, vol. 34, no. 4, pp. 251-252, 2011. [13] Ciancarini, P. and Favini, G.P., Monte Carlo tree search in Kriegspiel, Artificial Intelligence, vol. 174, pp. 670-684, 2010. [14] D. MacKay. Introduction to Monte Carlo methods. In M. Jordan, editor, Learning in graphical models. MIT Press, 1998. [15] D. Silver and G. Tesauro "Monte-Carlo simulation balancing", Proc. 26th Annu. Int. Conf. Mach. Learn., pp.945 -952 2009 [16] D.E. Knuth and R.W. Moore, “An Analysis of Alpha-Beta Pruning,” Artificial Intelligence, Vol. 6, 1975, Page 293--326. [17] Enzenberger, M., Müller, M., Arneson, B., and Segal, R., Fuego - An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search, IEEE Transactions on Computational Intelligence and AI in Games, vol. 2, no. 4, pp. 259-270, 2010. [18] Gamelet.com, Inc., Unique Chinese Dark Chess , http://tw.gamelet.com/game.do?code=darkchess
[19] Gelly, S. and Silver, D. (2011) Monte-Carlo tree search and rapid action value estimation in computer Go. Artificial Intelligence. Vol. 175, Issue 11, July 2011, pp. 1856-1875.
[20] Gelly, S. and Silver, D., Monte-Carlo tree search and rapid action value estimation in computer Go, Artificial Intelligence, vol. 175, no. 11, pp. 1856-1875, 2011.
[21] Gelly, S., Wang, Y., Munos, R., and Teytaud, O., Modification of UCT with patterns in Monte-Carlo Go, Technical Report 6062, INRIA, 2006. [22] Guy, V.B., Kurt, D., and Jan, R., Monte-Carlo tree search in poker using expected reward distributions, Advances in Machine Learning, First Asian Conference on Machine Learning, ACML 2009, pp. 367–381. [23] H. Baier and P. D. Drake "The power of forgetting: Improving the last-good-reply policy in Monte Carlo Go", IEEE Trans. Comput. Intell. AI Games, vol. 2, no. 4, pp.303 -309 2010. [24] H.J. Berliner. “Computer Backgammon,” Scientific American, Vol. 242, No. 6, 1980, pages 64--72. [25] J. P. A. M. Nijssen "Playing Othello using Monte Carlo", Strategies, pp.1 -9 2007 [26] Kloetzer, J., Iida, H., and Bouzy, B., The Monte-Carlo Approach in Amazons, Proceedings of the Computer Games Workshop 2007 (CGW 2007), Amsterdam, The Netherlands, 2007, pp. 185–192. [27] L. Kocsis , C. Szepesvári and J. Willemson Improved Monte-Carlo search,, 2006 [28] L. Kocsis and C. Szepesvari. “Bandit based monte-carlo planning.” In 15th European Conference on Machine Learning (ECML), pages 282–293, 2006. [29] Lai, S.-C., Research and Implementation of Computer Dark Chess Program with Heuristics, National Dong Hwa University, Matser thesis, 2008. (in Chinese) [30] Lishout, F. Van, Chaslot, G., and Uiterwijk, J.W.H.M., Monte-Carlo Tree Search in Backgammon, Proceedings of the Computer Games Workshop 2007 (CGW 2007), Amsterdam, The Netherlands, 2007, pp. 175-184. [31] Lou, W.-C., Artificial Intelligence Improvement of Chinese Dark Chess, National Taiwan Normal University, Master thesis, 2011. (in Chinese) [32] Martin Müller. Computer Go. Artificial Intelligence, 134:145-179, 2002. [33] P. Hingston and M. Masek "Experiments with Monte Carlo Othello", Proc. IEEE Congr. Evol. Comput., pp.4059 -4064 2007 [34] P.W. Prey, “Machine Problem Solving, Part 1: Trial-and-Error Search, a Mechanical Plan to Save the Missionaries,” BYTE, Sep., 1980, pages 102--112. [35] P.W. Prey, “Machine Problem Solving, Part 2: Directed Search Using Cryptarithmetic,” BYTE, Oct., 1980, pages 266--326. [36] R. Coulom and K. Chen, “CRAZY STONE Wins 9x9 Go Tournament”, ICGA Journal, vol. 29, no. 2, pp. 96-97 [37] R. Coulom "Computing Elo ratings of move patterns in the game of Go", Int. Comput. Games Assoc. J., vol. 30, no. 4, pp.198 -208 2007 [38] Rémi Coulom, Efficient selectivity and backup operators in Monte-Carlo tree search, Proceedings of the 5th international conference on Computers and games, p.72-83, May 29-31, 2006, Turin, Italy
[39] Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach 2/e, Prentice Hall, 2003. [40] S. Gelly and D. Silver "Combining online and offline knowledge in UCT", Proc. 24th Annu. Int. Conf. Mach. Learn., pp.273 -280 2007 [41] S. Gelly and Y. Wang, MOGO Wins 19×19 Go Tournament, ICGA Journal, vol. 30, no. 2, pp. 111-112 [42] S.-C. Huang , R. Coulom and S.-S. Lin "Monte-Carlo simulation balancing in practice", Proc. Comput. Games, pp.81 -92 2010 [43] Samuel, “Some studies of machine learning using the game of checkers,” IBM Journal of Research and Development, Vol. 3, No. 3, pages 210--229, 1959. [44] Shieh, Y.-A., The Design and Implementation of Computer Dark Chess, National Taiwan Normal University, Master thesis, 2008. (in Chinese) [45] Shih, H.-C. and Lin, S.-S., The Design and Implementation of Computer Dark Chess, Proceeding of TCGA workshop 2012, pp. 29-36, Hualien, Taiwan, 2012. (in Chinese) [46] Shi-Jim Yen, Cheng-Wei Chou, Shun-Chin Hsu, Jr-Chang Chen and Tai-Ning Yang, "Improvement of MCTS in Computer Go," the 14th Game Programming Workshop (GPW-09), November 13-15, 2009, Hakone Seminar House, Kanagawa, Japan: GPW-2010 Proceeding pp. 91-94. [47] T. Kozelek Methods of MCTS and the game Arimaa, 2009 [48] Van den Broeck, G., Driessens, K., and Ramon, J., Monte-Carlo Tree Search in Poker using Expected Reward Distributions, Adv. Mach. Learn., LNCS 5828, no. 1, 2009, pp. 367–381. [49] Y. Sato , D. Takahashi and R. Grimbergen "A Shogi program based on Monte-Carlo tree search", Int. Comput. Games Assoc. J., vol. 33, no. 2, pp.80 -92 2010 [50] Yang, J.-K., Su, T.-C., and Wu, I-C., TCGA 2012 Computer Game Tournament Report, submitted to ICGA Journal, 2013. [51] Yen, S.J., Chen, J.C., Yang, T.N., Hsu, S.C., Computer Chinese Chess. ICGA Journal, vol. 27, no. 1, pp. 3-18, ISSN 1389-6911, March 2004. [52] Yen, S.-J., Chiu, S.-Y., and Wu, I-C., Modark Wins Chinese Dark Chess Tournament, ICGA Journal, vol. 33, no. 4, pp. 230–231, 2010. [53] Yen, S.-J., Su, T.-C., and Wu, I-C., The TCGA 2011 Computer-Games Tournament, ICGA Journal, vol. 34, no. 2, pp. 108–110, 2011. [54] Yi-Shan Lin, I-Chen Wu, and Shi-Jim Yen, "TAAI 2011 Computer-Game Tournaments," ICGA Journal, vol. 34, no. 4, pp. 248-250.
|