[1.1] Tovey A. K., Crook, R. N.,“Experience of fires in concrete structures,”ACI Publication SP-92, pp. 1-14, (1984).
[1.2] 楊旻森,「火害後鋼筋混凝土桿件之扭力行為」,博士論文,國立台灣工業技術學院工程技術研究所,台北(1996)。[1.3] 林慶昌,「複材圍束補強含箍筋混凝土火害高溫影響之承載模式探討與分析」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
[1.4] Molhotra, H. L., "The effect of temperature on the compressive strength of concrete,”Magazine of Concrete Research, Vol. 8, No. 22, pp. 85-94,(1956).
[1.5] Harada, T., Takeda, J., Yamane, S., Furumura, F., "Strength, elasticity and thermal properties of concrete subject to elevated temperature,”Concrete for nuclear reactors, ACI SP-34, American Concrete Institute, Detroit, pp. 377-406, (1972).
[1.6] Abrams, M. S.,“Compressive strength of concrete at temperature to 600F,”ACI Publication SP-25, pp. 33-58, (1971)
[1.7] Papayianni, J., and Valoasis, T., "Residual mechanical properties of heated concrete incorporating different pozzolanic material,” Materials and Structures, Vol.24, pp. 115-121,(1991).
[1.8] Nassif, A. Y., Rigden, S. and Burley, E., “The effects of rapid cooling by water quenching on the stiffness properties of fire-damaged concrete,” Magazine of Concrete Research, Vol. 51, No. 4, pp. 255-261, (1999).
[1.9] 吳波、馬中誠、歐進萍,「高溫後混凝土變形特性及本構關係的試驗研究」,建築結構學報(中華人民共和國),第二十卷,第五期,第42-48頁,(1999)。
[1.10]Lie, T. T., Rowe, T. J., Lin, T. D, “Residual strength of fire-exposed reinforced concrete columns,” ACI Publication SP-92, pp. 153-174,(1984).
[1.11]Lin, C. H., Chen, S. T., Hwang, T. L., “Residual strength of reinforced concrete columns exposed to fire,”Journal of the Chinese Institute of Engineers, Vol. 12, No. 5, pp. 557-595, (1989).
[1.12]Lin, C. H., Tsai, C. S., “Deterioration of strength and stiffness of reinforced concrete columns after fire,” Journal of the Chinese Institute to Engineers, Vol. 13, No. 3, pp. 273-283, (1990).
[1.13]Peaceman, D. W., Rachford, H. H., “The numerical solution of parabolic and elliptic differential equations,” J. Soc. Ind. Appl. Math., Vol. 3, (1955).
[1.14]Oliva, M. G.,“Shaking table testing of a reinforced concrete frame with biaxial response”, Earthquake Engineering Research Center, University of California, Berkeley, EERC-80/28, (1980).
[2.1] 楊旻森,「火害後鋼筋混凝土桿件之扭力行為」,博士論文,國立台灣工業技術學院工程技術研究所,台北(1996)。
[2.2] 林慶昌,「複材圍束補強含箍筋混凝土火害高溫影響之承載模式探討與分析」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
[2.3] Molhotra, H. L., “The effect of temperature on the compressive strength of concrete,” Magazine of Concrete Research, Vol. 8, No. 22, pp. 85-94, (1956).
[2.4] Harada, T., Takeda, J., Yamane, S., Furumura, F., “Strength, elasticity and thermal properties of concrete subject to elevated temperature,”Concrete for nuclear reactors, ACI SP-34, American Concrete Institute, Detroit, pp. 377-406, (1972).
[2.5] Abrams, M. S., "Compressive strength of concrete at temperature to 1600F,”ACI Publication SP-25, pp. 33-58, (1971)
[2.6] Papayianni, J., and Valiasis, T., “Residual mechanical properties of heated concrete incorporating different pozzolanic material,” Materials and Structures, Vol.24, pp. 115-121, (1991).
[2.7] Nassif, A. Y., Rigden, S. and Burley, E., “The effects of rapid cooling by water quenching on the stiffness properties of fire-damaged concrete,” Magazine of Concrete Research, Vol. 51, No. 4, pp. 255-261, (1999).
[2.8] 吳波、馬中誠、歐進萍,「高溫後混凝土變形特性及本構關係的試驗研究」,建築結構學報(中華人民共和國),第二十卷,第五期,第42-48頁,(1999)。
[2.9] 吳波,「火害後鋼筋混凝土結構的力學性能」,科學出版社,北京,2003。
[2.10]Edwards, W. T., Gamble, W. L., “Strength of Grade 60 reinforcing bars after exposure to fire temperatures,” Concrete International, pp. 17-19, (1986).
[2.11]Harmathy, T. Z, Concrete at High Temperatures: Material Properties and thematical Models, Longman Group Limited, England, (1996).
[2.12]Dougill, J. W., “Some effects of thermal volume changes on the properties and behaviour of concrete,”The Structure of Concrete, Cement and Concrete Association, London, pp. 499-513, (1968).
[2.13]Roux, F.J.P., Concrete at elevated temperature, PhD Thesis, University of Cape Town, (1974).
[2.14]Kent, D.C., Park, R., Flexural members with confined concrete, Journal of Structural Engineering, Vol. 97, No. 7, pp.1969-1990, (1971).
[2.15]Popovics, S., “A Numerical approach to the complete stress-strain curve of concrete,” Cement and Concrete Research, Vol. 3, No. 5, pp. 583-599, (1973).
[2.16]Tsai, W. T., “Uniaxial compressional stress-strain relation of concrete,” Journal of Structural Engineering, Vol. 114, No. 9, pp.2133-2136, (1988).
[2.17]Mander, J. B., M. J. N. Priestley, R. Park, Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, Vol.114, No. 8, pp. 1804-1826, (1988).
[3.1] Khoury, G. A., Grainger, B. N., Sullivan, P. J. E., “Strain of concrete during first cooling from 600°C under load,” Magazine of Concrete Research, Vol. 38, No. 134, pp. 3-12, (1986).
[3.2] Zhukov, V. V., “Characteristics of concrete after fire exposure,”Proceedings of the Institution of Mechanical Engineers, Mechanical Engineering Publications Limited, London, pp. 135-141, (1992).
[3.3] 陳舜田、沈進發、楊旻森,「壓力作用下混凝土材料火害後之力學行為」,國科會專題研究計畫報告,NSC78-0410-E011-13,台北 (1989)。
[3.4] 楊旻森、陳舜田、林英俊,「火害後混凝土之殘留應變」,中國土木水利工程學刊,第九卷,第二期,第327-333頁 (1997)。[3.5] Khoury, G. A., Grainger, B. N., Sullivan, P. J. E., “Strain of concrete during first heating to 600°C under load,” Magazine of Concrete Research, Vol. 37, No. 133, pp. 195-215, (1986).
[3.6] Hsu, T. T., Slate, F. O., Sturman, G. M., Winter, G., “Microcracking of plain concrete and the shape of the stress-strain curve,” ACI Journal, V. 60, pp. 209-224, (1963).
[4.1] Lie, T. T., Rowe, T. J., Lin, T. D, “Residual strength of fire-exposed reinforced concrete columns,” ACI Publication SP-92, pp. 153-174, (1984).
[4.2] Lin, C. H., Chen, S. T., Hwang, T. L., “Residual strength of reinforced concrete columns exposed to fire,” Journal of the Chinese Institute of Engineers, Vol. 12, No. 5, pp. 557-595, (1989).
[4.3] Lin, C. H., Tsai, C. S., “Deterioration of strength and stiffness of reinforced concrete columns after fire,” Journal of the Chinese Institute to Engineers, Vol. 13, No. 3, pp. 273-283, (1990).
[4.4] Lie, T. T., Allen, D. E., Calculations of the fire resistance of reinforced concrete columns, National Research Council of Canada, Division of Building Research, NRCC 12797, Ottwa, (1972).
[4.5] 許崇堯,「火害後鋼筋握裹衰退及其對梁柱接頭特性影響之探討」,博士論文,國立台灣工業技術學院工程技術研究所,台北(1991)。[5.1] Weber, D. C., “ Ultimate strength design charts for columns with biaxial bending,” Proceedings of ACI Journal, Vol. 63, No. 11, pp. 1205-1230, (1966).
[5.2] Row, D. G., Paulay, T., “Biaxial flexure and axial load interaction in short rectangular reinforced concrete columns,” Bulletin of the New Zealand Society for Earthquake Engineering, Vol.6, No.3, pp. 110-121,(1973).
[5.3] Bresler, B., “Design criteria for reinforced columns under axial load and biaxial bending,” Proceedings of ACI Journal, Vol. 57, pp.481-490,(1960).
[5.4] Pannel, F. N., “Failure surfaces for members in compression and biaxial bending,” proceedings of ACI Journal, Vol. 60, pp. 129-140, (1963).
[5.5] Parme, A. L., Nieves, J. M., Gouwens, A., “Capacity of reinforced rectangular columns subject to biaxial bending,” proceedings of ACI Journal, Vol. 63, No. 9, pp. 911-923, (1966).
[5.6] Hsu, C. T., “Analysis and design of square and rectangular columns by equation of failure surface,” ACI Journal, Vol. 85, pp. 167-179, (1988).
[5.7] Yen, R. J., “Quasi-Newton method for reinforced-concrete column analysis and design,” Journal of Structural Engineering, Vol. 117, No.3, pp. 657-666, (1991).
[5.8] Dundar, C., “Concrete box sections under biaxial bending and axial load,” Journal of Structural Engineering, V. 116, No. 3, pp. 860-865, (1990).
[5.9] Brondum-Nielsen, T., “Concrete sections under biaxial bending,”Journal of Structural Engineering, Vol. 113, pp. 2137-2144, (1987).
[5.10]Brondum-Nielsen, T., “Serviceability analysis of concrete sections under biaxial bending,” Journal of Structural Engineering, Vol. 123, No. 1, pp. 117-119, (1997).
[5.11]Rodriguez, J. A., Aristizabal-Ochoa, J. D., “Biaxial interaction diagrams for short RC columns of any cross section,” Journal of structural Engineering, Vol. 125, No. 6, pp. 627-683, (1999).
[5.12]Chang, Y. F., Chen Y. H., Sheu, M. S., “Strength and flexural rigidity of RC columns under biaxial bending,” Journal of Architecture, No.47, pp.15-34, (2004).
[5.13]Davister, M. D., “A computer program for exact analysis,” Concrete International, (1986).
[5.14]Wang, C. K., “Solving the biaxial bending problem in reinforced concrete by a three-level iteration procedure,” Microcomputers in Civil Engineering, No. 3, pp.311-320, (1988).
[5.15]Li, K.-N., Aoyama, H., Otani, S., Reinforced concrete columns under varying axial load and bidirectional lateral load reversals,” Proceeding of Ninth World Conference on Earthquake Engineering, Vol.8, pp. 537-542, (1988).
[5.16]Hsu, C. T. T., Mirza, M. S., “Structural concrete-biaxial bending and compression,” Journal of the Structural Division, ASCE, Vol. 99, pp. 285-290, (1973).
[5.17]Al-Noury, S. I., Chen, W. F., “Behavior and design of reinforced and composite concrete section,” Journal of the Structural Division, ASCE, Vol. 108, pp. 1266-1284, (1982).
[5.18]賴宗吾,「鋼筋混凝土柱在變化偏心軸力作用下之構材行為」,博士論文,國立成功大學建築研究所,台南(1998)。[5.19]ACI Committee 318, Building code requirements for reinforced concrete(ACI 318-02), American Concrete Institude, Detroit, (2002).
[5.20]Branson, D. E., Deformation of concrete structures, McGraw-Hill, Inc.,(1977).
[5.21]Branson, D. E., Trost, H., “Application of I-effective method in calculating deflections of partially prestressed concrete members,”PCI Journal, Vol. 27, pp 62-77, (1982).
[5.22]Eurocode 2: Design of Concrete Structures - Part 1-1: General rules and rules for buildings, EN 1992-1-1, European Committee for Standardization, (2004).
[5.23]Ghali, A., Favre, R., Concrete structures: stresses and deformations, E & FN SPON, London, (1994).
[5.24]Tsao, W. H., Hsu, C. T. T., “A nonlinear computer analysis of biaxially loaded L-shaped slender reinforced concrete column,” Computers and Structures, Vol. 49, pp. 597-588, (1993).
[5.25]Kim, J. K., Lee, S. S., “The behavior of reinforced concrete columns subjected to axial force and biaxial bending,” Engineering Structures, Vol. 23, pp. 1518-1528, (2000).
[5.26]Lie, T. T., Lin, T. D., Fire performance of reinforced concrete columns, National Research Council Canada, Division of Building Research, DBR Paper No. 1352, NRCC 25351.
[5.27]Harmathy, T. Z., Allen, L. W., “Thermal properties of selected masonry unit concrete,” Journal of the American Concrete Institute, Vol. 70, pp.132-162, (1973).
[5.28]Ellingwood, B., Shaver, J., “Effects of fire on reinforced concrete members,” Journal of the Structural Division, ASCE, Vol. 106, pp. 2151-2166, (1980).
[5.29]CEB-FIP, Mode code for fire design of concrete structures, First draft, (1986).
[5.30]Peaceman, D. W., Rachford, H. H., “The numerical solution of parabolic and elliptic differential equations,” J. Soc. Ind. Appl. Math., Vol. 3, (1955).
[5.31]Eurocode 2: Design of concrete structures - Part 1-2: general rules-structure fire design, EN 1992-1-2, European Committee for standardization, (2004).
[5.32]Park, R., Priestley, M.J.N., Gill, W.D., “Ductility of square-confined concrete columns,” Journal of the Structural Division, ASCE, Vol. 108, pp. 929-950, (1982).
[5.33]Mander, J. B., Priestley, M. J. N., Park, R., “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-1826, (1988).
[5.34]Mohamad, J. T., Samir, A. H., “Effect of confinement on siliceous aggregate concrete subjected to elevated temperatures and cyclic heating,” ACI Materials Journal, Vol. 94, No. 2, pp. 83-89, (1997).
[5.35]黃盟楊,「複材圍束補強含箍筋混凝土火害高溫影響之成載模式探討與分析」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
[5.36]李麗,「高溫後複合方箍約束混凝土力學性能的試驗研究」,碩士論文,青島建築工程學院,中華人民共和國(2004)。
[5.37]陳義宏,「鋼筋混凝土曲樑之試驗與分析」,博士論文草稿,國立成功大學建築研究所。
[5.38]蔡東宏,「火害後鋼筋混凝土樑之延性」,碩士論文,國立台灣工業技術學院工程技術研究所,台北 (1997)。[5.39]Hsu, T. T. C., Unified Theory of Reinforced Concrete, CRC Press, Inc., Florida, (1993).
[5.40]Collins, M. P., Mitchell, D., Prestressed concrete structures, Prentice-Hall, Inc., New Jersey, (1991).
[5.41]Paulay, T., Priestley, M. J. N., Seismic design of reinforced concrete and masonry buildings, John Wiley & Sons, Inc., New York, (1992).
[6.1] Oliva, M. G., “Shaking table testing of a reinforced concrete frame with biaxial response”, Earthquake Engineering Research Center, University of California, Berkeley, EERC-80/28, (1980).
[6.2] Sheu, M. S., “A Gird model for prediction of monotonic and hysteretic behavior of reinforced concrete slab – column connections transferring moments,” Ph. D. Dissertation, University of Washington, Washington (1976).
[6.3] 內政部營建署建築研究所編輯委員會,建築物耐震設計規範與解說,台北,(1999).
[6.4] ATC, “Seismic evaluation and retrofit of concrete building,” ATC-40 Report, Applied Technology Council, California, (1996).
[6.5] 陳奕信,「含磚牆 RC建築物結構之耐震診斷」,博士論文,國立成功大學建築研究所,臺南,(2003)。[6.6] Structure Engineers Association of California Vision 2000 Committee, “Performance based seismic engineering of building,” SEAOC Vision 2000 Committee, Final Report, (1995).
[6.7] Zoldners, N. G., “Temperatures on concrete incorporating different aggregates”, Proceedings- American Society for Testing Materials, Vol. 60, pp. 1087-1108, (1960).
[6.8] Muto, K., “Aseismic design analysis of buildings” Maruzen Company, LTD., Tokyo, Japan, (1973).