|
1. Liao, P.C., et al., Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred from nuclear genes. BMC Evol Biol, 2010. 10: p. 124. 2. Geethangili, M. and Y.M. Tzeng, Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med, 2011. 2011: p. 212641. 3. Lee, Y.P., et al., Anticancer Effects of Eleven Triterpenoids Derived from Antrodia camphorata. Anticancer Res, 2012. 32(7): p. 2727-34. 4. Peng, C.C., et al., Human urinary bladder cancer T24 cells are susceptible to the Antrodia camphorata extracts. Cancer Lett, 2006. 243(1): p. 109-19. 5. Lu, M.K., et al., Fermented Antrodia cinnamomea extract protects rat PC12 cells from serum deprivation-induced apoptosis: the role of the MAPK family. J Agric Food Chem, 2008. 56(3): p. 865-74. 6. Huang, G.J., et al., Analgesic effects and the mechanisms of anti-inflammation of ergostatrien-3beta-ol from Antrodia camphorata submerged whole broth in mice. J Agric Food Chem, 2010. 58(12): p. 7445-52. 7. Rao, Y.K., S.H. Fang, and Y.M. Tzeng, Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol, 2007. 114(1): p. 78-85. 8. Shen, Y.C., et al., Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett, 2004. 231(1): p. 137-43. 9. Chen, Y.J., et al., Polysaccharides from Antrodia camphorata mycelia extracts possess immunomodulatory activity and inhibits infection of Schistosoma mansoni. Int Immunopharmacol, 2008. 8(3): p. 458-67. 10. Cheng, P.C., et al., In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni. Toxicol Appl Pharmacol, 2008. 227(2): p. 291-8. 11. Kuo, M.C., et al., Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate. J Ethnopharmacol, 2008. 120(2): p. 196-203. 12. Liu, D.Z., et al., Antihypertensive activities of a solid-state culture of Taiwanofungus camphoratus (Chang-chih) in spontaneously hypertensive rats. Biosci Biotechnol Biochem, 2007. 71(1): p. 23-30. 13. Wu, M.D., et al., Antioxidant activities of extracts and metabolites isolated from the fungus Antrodia cinnamomea. Nat Prod Res, 2011. 25(16): p. 1488-96. 14. Hsieh, Y.C., et al., Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway. J Agric Food Chem, 2011. 59(20): p. 10943-54. 15. Hseu, Y.C., et al., Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol, 2005. 5(13-14): p. 1914-25. 16. Wen, C.L., et al., Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. J Ethnopharmacol, 2011. 137(1): p. 575-84. 17. Yang, S.S., et al., New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata. Planta Med, 2009. 75(5): p. 512-6. 18. Hsieh, Y.H., et al., Antrocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus , and its mechanisms. J Agric Food Chem, 2010. 58(5): p. 3153-8. 19. Shen, Y.C., et al., Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med, 2004. 70(4): p. 310-4. 20. Chen, C.C., et al., Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. J Agric Food Chem, 2007. 55(13): p. 5007-12. 21. Rock, K.L., et al., The sterile inflammatory response. Annu Rev Immunol, 2010. 28: p. 321-42. 22. Takeuchi, O. and S. Akira, Pattern recognition receptors and inflammation. Cell, 2010. 140(6): p. 805-20. 23. Chen, G.Y. and G. Nunez, Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 2010. 10(12): p. 826-37. 24. Schroder, K. and J. Tschopp, The inflammasomes. Cell, 2010. 140(6): p. 821-32. 25. Kanneganti, T.D., Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol, 2010. 10(10): p. 688-98. 26. Martinon, F., Signaling by ROS drives inflammasome activation. Eur J Immunol, 2010. 40(3): p. 616-9. 27. Hornung, V. and E. Latz, Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol, 2010. 40(3): p. 620-3. 28. Zhou, R., et al., Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 2010. 11(2): p. 136-40. 29. Martinon, F., et al., Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006. 440(7081): p. 237-41. 30. Cassel, S.L., et al., The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A, 2008. 105(26): p. 9035-40. 31. Dostert, C., et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008. 320(5876): p. 674-7. 32. Feldmeyer, L., et al., The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol, 2007. 17(13): p. 1140-5. 33. Kanneganti, T.D., et al., Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity, 2007. 26(4): p. 433-43. 34. Halle, A., et al., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol, 2008. 9(8): p. 857-65. 35. Hornung, V., et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol, 2008. 9(8): p. 847-56. 36. Martinon, F., A. Mayor, and J. Tschopp, The inflammasomes: guardians of the body. Annu Rev Immunol, 2009. 27: p. 229-65. 37. Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 2002. 10(2): p. 417-26. 38. Kahlenberg, J.M. and G.R. Dubyak, Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol, 2004. 286(5): p. C1100-8. 39. Babelova, A., et al., Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem, 2009. 284(36): p. 24035-48. 40. Cruz, C.M., et al., ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem, 2007. 282(5): p. 2871-9. 41. Coutinho-Silva, R., et al., The P2X(7) receptor and intracellular pathogens: a continuing struggle. Purinergic Signal, 2009. 5(2): p. 197-204. 42. Hsu, Y.L., et al., Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett, 2005. 221(1): p. 77-89. 43. Lee, T.H., et al., A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med, 2007. 73(13): p. 1412-5. 44. Martinon, F. and J. Tschopp, Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 2004. 117(5): p. 561-74. 45. Sollberger, G., et al., Caspase-4 is required for activation of inflammasomes. J Immunol, 2012. 188(4): p. 1992-2000. 46. Bauernfeind, F.G., et al., Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 2009. 183(2): p. 787-91. 47. Boyden, E.D. and W.F. Dietrich, Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet, 2006. 38(2): p. 240-4. 48. Sutterwala, F.S., et al., Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med, 2007. 204(13): p. 3235-45. 49. Kofoed, E.M. and R.E. Vance, Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature, 2011. 477(7366): p. 592-5. 50. Burckstummer, T., et al., An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol, 2009. 10(3): p. 266-72. 51. Saitoh, T., et al., Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 2008. 456(7219): p. 264-8. 52. Sander, L.E., et al., Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature, 2011. 474(7351): p. 385-9. 53. Kawai, T. and S. Akira, TLR signaling. Cell Death Differ, 2006. 13(5): p. 816-25. 54. Gonzalez-Navajas, J.M., et al., Immunomodulatory functions of type I interferons. Nat Rev Immunol, 2012. 12(2): p. 125-35. 55. Rathinam, V.A., et al., TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell, 2012. 150(3): p. 606-19.
|