|
[1] A. Aksay, A. Temizel, and A. Enis Cetin. Camera tamper detection using wavelet analysis for video surveillance. In Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on, pages 558{562. IEEE, 2007. [2] E. Ribnick, S. Atev, O. Masoud, N. Papanikolopoulos, and R. Voyles. Real-time de- tection of camera tampering. In Video and Signal Based Surveillance, 2006. AVSS'06. IEEE International Conference on, pages 10{10. IEEE, 2006. [3] R.T. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, et al. A system for video surveillance and moni- toring. Carnegie Mellon University, the Robotics Institute, 2000. [4] A. Saglam and A. Temizel. Real-time adaptive camera tamper detection for video surveillance. In Advanced Video and Signal Based Surveillance, 2009. AVSS'09. Sixth IEEE International Conference on, pages 430{435. IEEE, 2009. [5] P. Gil-Jimenez, R. Lopez-Sastre, P. Siegmann, J. Acevedo-Rodriguez, and S. Maldonado-Bascon. Automatic control of video surveillance camera sabotage. Nature Inspired Problem-Solving Methods in Knowledge Engineering, pages 222{231, 2007. [6] S. Harasse, L. Bonnaud, A. Caplier, and M. Desvignes. Automated camera dysfunctions detection. In Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on, pages 36{40. IEEE, 2004. [7] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm Computing Surveys (CSUR), 38(4):13, 2006. [8] H. Wang, D. Suter, K. Schindler, and C. Shen. Adaptive object tracking based on an eective appearance lter. Pattern Analysis and Machine Intelligence, IEEE Transac- tions on, 29(9):1661{1667, 2007. [9] F. Porikli, O. Tuzel, and P. Meer. Covariance tracking using model update based on lie algebra. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 728{735. IEEE, 2006. [10] X. Zhang, W. Hu, S. Maybank, and X. Li. Graph based discriminative learning for robust and ecient object tracking. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1{8. IEEE, 2007. [11] S. Avidan. Ensemble tracking. Pattern Analysis and Machine Intelligence, IEEE Trans- actions on, 29(2):261{271, 2007. [12] O. Tuzel, F. Porikli, and P. Meer. Learning on lie groups for invariant detection and tracking. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Con- ference on, pages 1{8. IEEE, 2008. [13] I. Leichter, M. Lindenbaum, and E. Rivlin. Tracking by ane kernel transformations using color and boundary cues. Pattern Analysis and Machine Intelligence, IEEE Trans- actions on, 31(1):164{171, 2009. [14] B. Babenko, M.H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con- ference on, pages 983{990. IEEE, 2009. [15] K. Zimmermann, J. Matas, and T. Svoboda. Tracking by an optimal sequence of linear predictors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(4):677{692, 2009. [16] P. Li, T. Zhang, and B. Ma. Unscented kalman lter for visual curve tracking. Image and Vision Computing, 22(2):157{164, 2004. [17] X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu. Sequential particle swarm optimiza- tion for visual tracking. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1{8. IEEE, 2008. [18] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework. Interna- tional Journal of Computer Vision, 56(3):221{255, 2004. [19] A. Yilmaz. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1{6. IEEE, 2007. [20] A. O'Hagan, J. Forster, and M.G. Kendall. Bayesian inference. Arnold, 1994. [21] G.E.P. Box, G.C. Tiao, and WISCONSIN UNIV MADISON DEPT OF STATISTICS. Bayesian inference in statistical analysis. Wiley Online Library, 1992. [22] J.P. Huelsenbeck, F. Ronquist, et al. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8):754{755, 2001. [23] G. Welch and G. Bishop. An introduction to the kalman lter. University of North Carolina at Chapel Hill, Chapel Hill, NC, 7(1), 1995. [24] Q. Fu and M. Santello. Tracking whole hand kinematics using extended kalman lter. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pages 4606{4609. IEEE, 2010. [25] C.R.Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland. Pnder: Real-time tracking of the human body. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(7):780{785, 1997. [26] C. Stauer and W.E.L. Grimson. Adaptive background mixture models for real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 2. IEEE, 1999. [27] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2, pages 142{149. IEEE, 2000. [28] C. Hue, J.P. Le Cadre, and P. Perez. Tracking multiple objects with particle ltering. Aerospace and Electronic Systems, IEEE Transactions on, 38(3):791{812, 2002. [29] D.T. Lin and L.W. Liu. Object Tracking and People Counting at Multiple distances. 2008. [30] D.T. Lin and K.Y. Huang. Object tracking of multiple cameras. IEEE World Congress on Computational Intelligence, 2009. [31] D.T. Lin and Y.H. Chang. Occluded Pedestrian Tracking using Collaboration of Kalman Filter and Particle Filter. 2010. [32] Beagleboard.org - hardware http://beagleboard.org/hardware/.
|