|
[1]L. Goldberg, R. Reedy, and S. H. Lee, “Silicon Photodiode for Optical Channel Waveguides,” Appl. Phys. Lett., Vol. 37, pp. 195-197, 1980. [2]M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, ”Room-Temperature Operation of An InGaAsP Double-Heterostructure Laser Emitting at 1.55µm on a Si Substrate,” Appl. Phys. Lett., Vol. 57, No. 6, pp. 593-595, 1990. [3]P. Äyräs, G. N. Conti, S. Honkanen, and N. Peyghambarian, “Birefringence Control for Ion-Exchanged Channel Glass Waveguides,” Appl. Opt., Vol. 37, No. 36, pp. 8400-8405, 1998. [4]S.O. Kasap, “Optoelectronics and Photonics Principles and Practices,” Prentice Hall. [5]P. Yeh, and C. Gu, “Optics of Liquid Crystal Displays-Jones Matrix Method,” Wiley Inter-Science. [6]S. Thaniyavarn, “Wavelength Independent, Optical Damage Immune Z-propagation LiNbO3 Waveguide Polarization Converter,” Appl. Phys. Lett., Vol. 47, No. 7, pp. 674-677, 1985. [7]N. A. Sanford, J. M. Connors, and W. A. Dyes, “Simplified Z-propagating DC Bias Stable TE-TM Mode Convertor Fabricated in Y-cut Lithium Niobate,” J. Lightw. Technol., Vol. 6, No. 6, pp. 898-901, 1988. [8]H. Porte, R. Ferriere, and J. P. Goedgebuer, “Integrated Waveguide Modulator Using a LiNbO3 TE-TM Convertor for Electrooptic Coherence Modulation of Light,” J. Lightw. Technol., Vol. 6, No. 6, pp. 892-897, 1988. [9]S. Thaniyavarn, “Wavelength-independent, Optical-damage-immune LiNbO3 TE-TM mode converter,” Opt. Lett., Vol. 11, No. 1, pp. 39-41, 1986. [10]T. Kawazoe, K. Satoh, I. Hayashi, and H. Moir, “Fabrication of Integrated-Optic Polarization Controller Using Z-Propagating Ti-LiNbO3 Waveguides,” J. Lightw. Technol., Vol. 10, No. 1, pp. 51-56, 1992. [11]T. Fujiwara, Member, IEEE, A. Watanabe, and H. Mori, “Polarization Dependent Loss in a Ti:LiNbO3 Polarization Scrambler/Controller,” IEEE Photo. Technol. Lett., Vol. 8, No. 4, pp. 542-544, 1996. [12]R. Sommerfeldt, L. Holtman, and E. Krätzig, “The Light-induced Charge Transport in LiNbO3:Mg, Fe Crystals,” Ferroelectrics, Vol. 92, pp. 219, 1989. [13]T. Volk, N. Rubinina, and M. Wöehlecke, “Optical-damage-resistant Impurities in Lithium Niobate,” J. Opt. Soc. Am. B 11, pp. 1681, 1994. [14]G. Y. Zhang, J. J. Xu, Q. Sun, S. Liu, G. Q. Zhang, Q. I. Fang, and C. L. Ma, “Study of Resistance Against Photorefractive Light-induced Scattering in LiNbO3:Fe,Mg crystals,” Photorefractive fiber and crystal devices: materials, Optical Properties, and Applications, Francis T. S. Yu, Editors, Proc. of SPIE, Vol. 2529, pp. 14-17, 1995. [15]R. C. Twu, C. C. Huang, and W. S. Wang, “Zn Indiffusion Waveguide Polarizer on a Y-cut LiNbO3 at 1.32 μm Wavelength,” IEEE Photo. Technol. Lett., Vol. 12, No. 2, pp. 161-163, 2000. [16]Y. Shigematsu, M. Fujimura and T. Suhara, “Fabrication of LiNbO3 TE/TM Waveguides for 1.5mm Wavelength Bband by Zn/Ni Diffusion in Low-Pressure Atmosphere,” Japanese Journal of Applied Physics, Vol. 41, pt. 1, No. 7B, pp. 4825-4827, 2002. [17]J. S. Selvan, M. Fujimura and T. Suhara, “Fabrication of Zn-indiffused LiNbO3 Optical Waveguides by Diffusing Sol-Gel Spin-Coated ZnO Film at Low-Pressure Atmosphere,” Japanese Journal of Appl. Phys., Vol. 43, Part.1, No. 8A, pp. 5313-5315, 2004. [18]T. Suhara, T. Fujieda, M. Fujimura and H. Nishihara, “Fabrication of Zn:LiNbO3 Waveguides by Diffusing ZnO in Low-Pressure Atmosphere,” Japanese Journal of Appl. Phys., Vol. 39, No. 8B, pp. L864-L865, 2000. [19]R. C. Miller, and W. A. Nordland, “Absolute Signs of Second Harmonic Generation Coefficients of Piezoelectric Crystals,” Phys. Rev. B, Vol. 2, pp. 4896-4902, 1970. [20]Crystal Technology, “Lithium Niobate Optical Crystal,” http://www.crystaltechnology.com/docs/LNopt.pdf. [21]A. Yariv, and P. Yeh, “Optical Waves in Crystals,” MEI YA. [22]孫慶成, “光電概論,” 全華出版. [23]R. C. Alferness, “Electro-optic Waveguide TE to TM Mode Converter with Low Drive Voltage,” Opt. Lett., Vol. 5, No. 11, pp. 473-475, 1980. [24]R. C. Alferness, “Electrooptic Guided-Wave Device for General Polarization Tramsformations,” IEEE Journal of Quantum Electronics, Vol. QE-17, No. 6, pp. 965-969, 1981. [25]L. Sun, and G. L. Yip, “Analysis of Metal-clad Optical Waveguide Polarizers by the Vector Beam Propagation Method,” Appl. Opt., Vol. 33, No. 6, pp. 1047-1050, 1994. [26]M. Levesque, and P. Tremblay, “A Novel Technique to Measure The Dynamic Response of an Optical Phase Modulator,” IEEE Transaction on Instrumentation and Measurement, Vol. 44, No. 5, pp. 952-957, 1995. [27]R. C. Twu, H. H. Lee, C. Y. Yang, and H. Y. Hong, “Zn-Diffused Polarization Phase Modulator in X-Cut Lithium Niobate,” MOC’07, Paper No. H-71, Kagawa, Japan, 2007. [28]T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, “Comparison of Photorefractive Index Change in Proton-exchanged and Ti-diffused LiNbO3 Waveguides,” Opt. Lett., Vol. 18, No. 5, pp. 346-348, 1993. [29]C. Gu, Y. Liu, Y. Xu, J. J. Pan, Fengqing Zhou, and Henry He, “Photorefractive Materials and Devices are Becoming Viable Alternatives for Information Systems,” IEEE Circuits & Devices Magazine, Vol. 19, No. 11, pp. 17-23, 2003. [30]P. Günter, and J. P. Huignard (eds.), “Photorefractive Meterials and Their Applications I and II,” Vol. 61, 62 Springer, Heidelberg, 1988. [31]R. A. Becker, “"Thermal fixing" of Ti-indiffused LiNbO3 Channel Waveguides for Reduced Photorefractive Susceptibility,” Appl. Phys. Lett., Vol. 45, pp. 121-123, 1984. [32]M. Falk, Th. Woike, and K. Buse, “Reduction of Optical Damage in Lithium Niobate Crystals by Thermo-electric Oxidization,” Appl. Phys. Lett., Vol. 90, pp. 25192, 2007. [33]R. C. Twu, H. H. Lee, H. Y. Hong, and C. Y. Yang, “A novel Zn-indiffused Mode Converter in x-cut Lithium Niobate,” Optics Express, Vol. 15, No. 23, pp. 15576-15582, 2007. [34]R. C. Twu, Member, IEEE, “Zn-Diffused 1 x 2 Balanced-Bridge Optical Switch in a Y-Cut Lithium Niobate,” IEEE Photo. Technol. Lett., Vol. 19, No. 16, pp.1269-1271, 2007.
|