|
[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Reading, MA, 1974. [2] H. Aram, S.M. Sheikholeslami, and O. Favaron, Domination subdivision numbers of trees, Discrete Math. 155 (2007) 1700-1707. [3] S.R. Arikati and C.P. Rangan, Linear algorithm for optimal path cover problem on interval graphs, Inform. Process. Lett. 35 (1990) 149-153. [4] Katerina Asdre, Stavros D. Nikolopoulos, Charis Papadopoulos, An optimal parallel solution for the path cover problem on P4-sparse graphs, Parallel Distrib. Comput. 67 (2007) 63 – 76. [5] R. Bardeli, M. Clausen, and A. Ribbrock, A covering problem that is easy for trees but NP-complete for trivalent graphs, Discrete Appl. Math. 156 (2007) 2855-2866. [6] A.A. Bertossi and M.A. Bonuccelli, Hamiltonian circuits in interval graph generalizations, Inform. Process. Lett. 23 (1986) 195-200. [7] J.R.S. Blair, W. Goddard, S.T. Hedetniemi, S. Horton, P. Jones, and G. Kubicki, On domination and reinforcement numbers in trees, Discrete Math. 308 (2008) 1165-1175. [8] F.T. Boesch and J.F. Gimpel, Covering the points a digraph with point-disjoint paths and its application to code optimization, J. ACM 24 (1977) 192-198. [9] G.J. Chang, Corrigendum to: The path-partition problem in block graphs, Inform. Process. Lett. 83 (2002) 293. [10] M.S. Chang, S.L. Peng and J.L. Liaw, Deferred-query: an efficient approach for some problems on interval graphs, Networks 34 (1999) 1-10. [11] H.H. Chou, M.T. Ko, C.W. Ho, and G.H. Chen, Node-searching problem on block graphs, Discrete Appl. Math. 156 (2008) 55-75. [12] P. Damaschke, J.S. Deogun, D. Kratsch and G. Steiner, Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm, Order 8 (1992) 383-391. [13] D. Doratha E and S. Hougardy, On approximation algorithms for the terminal Steiner tree problem, Inform. Process. Lett. 89 (2004) 15-18. [14] H. Escuadro and P. Zhang, Extremal problems on detectable colorings of trees, Discrete Math. 308 (2008) 1951-1961. [15] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979. [16] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (1976) 237-267. [17] S. Goodman and S. Hedetniemi, On the Hamiltonian completion problem, in: Proc. 1973 Capital Conf. on Graph Theory and Combinatorics, Lecture Notes in Math. 406 (1974) 262-272. [18] L.T. Quoc Hung, M.M. Sysło, M.L. Weaver and D.B. West, Bandwidth and density for block graphs, Discrete Math. 189 (1998) 163-176. [19] R.W. Hung, A linear-time algorithm for the terminal path cover problem in cographs, in: Proceddings of the 23rd Workshop on Combinatorial Mathematics and Computation Theory, Changhwa, Taiwan, (2006) 62-75. (http://algo2006.csie.dyu.edu.tw/paper/1/B14.pdf) [20] R.W. Hung, Optimal vertex ranking of block graphs, Information and Computation 206 (2008) 1288-1302 [21] R.W. Hung and M.S. Chang, Solving the path cover problem on circular-arc graphs by using an approximation algorithm, Discrete Appl. Math. 154 (2006) 76-105. [22] R.W. Hung and M.S. Chang, Finding a minimum path cover of a distance-hereditary graph in polynomial time, Discrete Appl. Math. 155 (2007) 2242-2256. [23] R.W. Hung and C.A. Fang, A linear-time algorithm for the terminal path cover problem in trees, in: Proceedings of National Computer Symposium (NCS’2007), Taichung, Taiwan, 2007, 558-566. [24] R.W. Hung, A linear-time algorithm for the terminal path cover problem in block graphs, in: International MultiConference of Engineers and Computer Scientists (IMECS’2008), HonKong, Vol. I., 2008, 286-292. [25] G. Xu, L. Kang, E. Shan, and M. Zhao, Power domination in block graphs, Theoret. Comput. Sci. 359 (2006) 299-305. [26] S. Kenkre and S. Vishwanathan, The common prefix problem on trees, Inform. Process. Lett. 105 (2008) 245-248. [27] E. Korach and M. Stern, The complete optimal stars clustering tree problem, Discrete Appl. Math. 156 (2008) 444-450. [28] M.S. Krishnamoorthy, An NP-hard problem in bipartite graphs, SIGACT News 7 (1976) 26. [29] G. Lin, Z. Cai, and D. Lin, Vertex covering by paths on trees with its applications in machine translation, Inform. Process. Lett. 97 (2006) 73-81. [30] S. Moran and Y. Wolfstahl, Optimal covering of cacti by vertex disjoint paths, Theoret. Comput. Sci. 84 (1991) 179-197. [31] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1996) 291-298. [32] H. Nagamochi and K. Okada, Approximating the minmax rooted tree cover in a tree, Inform. Process. Lett. 104 (2007) 173-178. [33] G. Narasimhan, A note on the Hamiltonian circuit problem on directed path graphs, Inform. Process. Lett. 32 (1989) 167-170. [34] S.C. Ntafos and S. Louis Hakimi, On path cover problems in digraphs and applications to program testing, IEEE Trans. Software Engrg. 5 (1979) 520-529. [35] J.J Pan and G.J. Chang, Path partition for graphs with special blocks, Discrete Appl. Math. 145 (2005) 429-436. [36] S. Pinter and Y. Wolfstahl, On mapping processes to processors, Internat. J. Parallel Programming 16 (1987) 1-15. [37] K. Sitaraman, N. Ranganathan, and A. Ejnioui, A VLSI architecture for object recognition using tree matching, in: Application-Specific Systems, Architectures and Processors, IEEE International Conference (2002) 325-334. [38] R. Srikant, R. Sundaram, K.S. Singh and C.P. Rangan, Optimal path cover problem on block graphs and bipartite permutation graphs, Theoret. Comput. Sci. 115 (1993) 351-357. [39] H. Stephen W, On tree congestion of graphs, Discrete Math. 308 (2008) 1801-1809. [40] A.S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, 1981. [41] P.K. Wong, Optimal path cover problem on block graphs, Theoret. Comput.Sci. 225 (1999) 163-169. [42] Q. Wu, C.L. Lu, and R.C.T. Lee, The approximability of the weighted Hamiltonian path completion problem on a tree, Theoret. Comput. Sci. 341 (2005) 385-397. [43] Bang-YeWu, Hung-Lung Wang, Shih Ta Kuan, Kun-Mao Chao, On the uniform edge-partition of a tree, Discrete Applied Mathematics 155 (2007) 1213 – 1223. [44] J.H. Yan and G.J. Chang, The path-partition problem in block graphs, Inform. Process. Lett. 52 (1994) 317-322. [45] J.H. Yan, G.J. Chang, S.M. Hedetniemi, and S.T. Hedetniemi, k-path partitions in trees, Discrete Appl. Math. 78 (1997) 227-233. [46] H.G. Yeh and G.J. Chang, The path-partition problem in bipartite distance-hereditary graphs, Taiwanese J. Math. 2 (1998) 353-360. [47] William C.K. Yen, The bottleneck independent domination on the classes of bipartite graphs and block graphs, Inform. Sci. 157 (2003) 199-215.
|