[1] 王秀雯(2004),應用資料挖掘技術於交通事故傷亡嚴重程度之研究,碩士論文,國立嘉義大學,嘉義。[2] 李友仁(2005),應用汽車駕駛模擬系統於道路交通事故成因檢討之研究,碩士論文,國立成功大學交通管理科學研究所,台南。[3] 宋子康(2006),資料串流中尋找關聯法則之研究,碩士論文,國立臺灣科技大學資訊管理系,台北。[4] 吳易真(2003),基隆市交通肇事分析及安全改善之研究,碩士論文,國立交通大學交通運輸研究所,新竹。[5] 吳冠宏、吳信宏、郭廣洋(2004),「應用資料挖掘於交通事故資料分析」,中華民國品質學會第40 屆年會高雄市分會第30 屆年會暨第10 屆全國品質管理研討會論文集,C2-7,第72-81頁。
[6] 吳冠宏、吳信宏、郭廣洋(2006),「應用分群技術於交通事故資料分析」,品質學報,第三十卷,第三期,第305-312頁。[7] 邱明鋒(2006),高速公路事故發生時非事故車道上駕駛人感受與駕駛行為之研究,碩士論文,國立交通大學交通運輸研究所,新竹。[8] 邱裕鈞、張凱羚、黃彥斐、吳佩珊(2004),「公路長隧道事故救援策略之多準則決策模型」,九十三年道路交通安全與執法國際研討會論文集,第245-256頁。
[9] 林亨杰(2004),「高速公路速限提昇前後之交通事故探討」,九十三年道路交通安全與執法國際研討會論文集,第499-514頁。
[10] 林佐鼎、陳志和(2001),「都市地區肇事嚴重程度預測模式之研究」, 中華民國第八屆運輸安全研討會,第319-328頁。
[11] 林俊廷(2005),智慧型運輸決策支援系統於意外事件下之路徑導引,碩士論文,朝陽科技大學資訊管理研究所,台中。[12] 林郁志(1997),都市地區肇事嚴重程度之分析研究─以臺南市為例,碩士論文,國立成功大學交通管理科學研究所,台南。[13] 周雍傑(2000),以類神經網路探討都市地區肇事嚴重程度之研究,碩士論文,國立成功大學,台南。[14] 侯鈞元(2002),應用羅吉特模式於市區道路事故偵測系統,碩士論文,國立成功大學交通管理科學研究所,台南。[15] 孫璋英(2004),汽機車單一車輛事故駕駛人死亡勝算模式之研究,碩士論文,國立臺北大學統計學系,台北。[16] 梁力元(2006),公路長隧道通行貨車風險分析─以雪山隧道為例,碩士論文,國立中央大學土木工程學系,桃園。[17] 陳文杰(2004),應用資料挖掘技術於高速公路交通肇事次數之研究,碩士論文,國立嘉義大學,嘉義。[18] 陳協昌(2000),市區道路事故發生對車流衝擊之即時預測,碩士論文,國立臺灣大學土木工程學研究所,台北。[19] 戚培芳(1997),中山高速公路肇事分析模式之研究,碩士論文,國立交通大學交通運輸研究所,新竹。[20] 黃志偉(2002),高速公路肇事處理時間預測之研究—應用類神經網路分析,碩士論文,國立中央大學土木工程研究所,桃園。[21] 黃昶斌(2004),以類神經網路探討都市地區肇事嚴重程度,碩士論文,國立交通大學,新竹。[22] 楊仁維(2006),路口交通事故成因分析方法之比較研究,碩士論文,逢甲大學交通工程與管理學系,台中。[23] 楊正宏、王譯�隉B張俊陽(2006),「關聯式規則結合品管手法用於液晶面板框膠製程不良分析」,2006數位科技與創新管理國際研討會論文集,第1511-1522頁。
[24] 楊思瑜(2003),小型車事故特性分析及嚴重程度預測模式之研究─以桃竹苗地區為例,碩士論文,逢甲大學交通工程與管理學系,台中。[25] 詹淑敏(2006),大客車安全問題與認知之研究,碩士論文,逢甲大學交通工程與管理學系,台中。[26] 廖彥琪(2006),機車交通事故與其衍生之醫療費用成因探討與分類模型研究,碩士論文,中臺科技大學醫護管理研究所,台中。[27] 歐輝政、吳木富(1992),「中山高速公路交通事故趨勢分析之研究」,中華民國運輸學會第七屆研討會,第123-139頁。
[28] 簡俊能、王銘亨、兵界力(1999),「高速公路隧道群(區)車流及行車事故特性分析」,88年道路交通安全與執法研討會論文集,第307-321頁。
[29] 蘇志強、趙崇仁(1996),「應用類神經網路鑑別中山高速公路危險路段之研究」,中華民國運輸學會第十一屆學術論文研討會論文集。
[30] 蘇宥宜(2005),應用情境分析方法研究台灣地區單一小客車交通事故,碩士論文,國立交通大學交通運輸研究所,新竹。[31] 蘇昭銘、洪啟源、蔡東倫、陳儒威、黃競鋒(2004),「封閉型社區出入道路之路口交通控制策略評估研究」,九十三年道路交通安全與執法國際研討會論文集,第427-438頁。
[32] 蘇建誌(2002),台灣地區貨車安全風險分析之研究,碩士論文,國立高雄第一科技大學運輸與倉儲營運研究所,高雄。[33] 行政院衛生署(2006),死因統計結果分析,Online,2008年2月10日,取自http://www.doh.gov.tw/statistic/data/衛生統計叢書2/95/上冊/95年死因統計結果分析.doc。
[34] 行政院衛生署(2006),事故傷害及自殺自傷標準化死亡率之國際比較,Online,2008年2月10日,取自http://www.doh.gov.tw/statistic/data/衛生統計叢書2/95/上冊/表45.xls。
[35] M. Abdel-Aty and E. Radwan (2000), “Modeling Traffic Accident Occurrence and Involvement,” Accident Analysis and Prevention, Vol. 32, No. 5, pp. 633-642.
[36] R. Agrawal and R. Srikant (1995), “Mining Sequential Patterns,” Proceedings of the 11th International Conference on Data Engineering, pp. 3-14.
[37] A. S. Al-Ghamdi (2002), “Using Logistic Regression to Estimate the Influence of Accident Factors on Accident Severity,” Accident Analysis and Prevention, Vol. 34, pp. 729-741.
[38] N.F. Ayn, A.U. Tansel, and E. Arun (1999), “An Efficient Algorithm to Update Large Itemsets with Early Pruning,” Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
[39] N.F. Ayn, A.U. Tansel, and E. Arun (1999), “An Efficient Algorithm to Update Large Itemsets with Early Pruning,” Technical Report BU-CEIS-9908 Dept of CEIS Bilkent Uniiversity.
[40] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur (1997), “Dynamic Itemset Counting and Implication Rules for Market Basket Data,” Proceedings of the ACM SIGMOD, pp. 255-264.
[41] J. H. Chang and W. S. Lee (2003), “Finding Recent Frequent Itemsets Adaptively over Online Data Streams,” Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Ming, pp. 487-492.
[42] R. Chedy, P. Pascal, and T. Maguelonne (2006), “SPEED: Mining Maximal Sequential Patterns over Data Streams,” Proceedings of the 3rd International IEEE Conference on Intelligent Systems, pp. 546-552.
[43] E. Cohen and M. Strauss, “Maintaining Time Decaying Stream Aggregates,” Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), pp. 223-233.
[44] C. M. Chen and Y. L. Hsieh (2005), “Mining Learner Profile Utilizing Association Rule for Common Learning Misconception Diagnosis,” Proceedings of the Fifth IEEE International Conference on Advanced Learning Technologies.
[45] D. Cheung, J. Han, V. Ng, and C.Y. Wong (1996), “Maintenance of Discovered Association Rules in Large Databases: an Incremental Updating Technique,” Proceedings of 1996 International Conference on Data Engineering, pp. 106-114.
[46] D. Cheung, S.D. Lee, and B. Kao (1997), “A General Incremental Technique for Updating Discovered Association Rules,” Proceedings of the International Conference On Database Systems For Advanced Applications.
[47] Y. Chi, H. Wang, P.S. Yu, and R. Richard (2004), “Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window,” Proceedings of the 2004 IEEE International Conference on Data Mining.
[48] N. Doohee and F. Mannering (2000), “An Exploratory Hazard-Based Analysis of Highway Incident Duration,” Transportation Research Part A, Vol. 34, No. 2, pp.85-102.
[49] C.I. Ezeife and M. Monwar (2007), “SSM: a Frequent Sequential Data Stream Patterns Miner,” Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining, pp.120-126.
[50] C. C. Ho, H. F. Li, F. F. Kuo, and S. Y. Lee (2006), “Incremental Mining of Sequential Patterns over a Stream Sliding Window,” Proceedings of the Sixth IEEE International Conference on Data Mining-Workshops, pp. 677-681.
[51] V. Karasová, J.M. Krisp, and K. Virrantaus (2005), “Application of Spatial Association Rules for Improvement of a Risk Model for Fire and Rescue Services,” Proceedings of ScanGIS2005.
[52] P. M. Kuhnert, K. A. Do, R. McClure (2000), “Combining Non-Parametric Models with Logistic Regression: an Application to Motor Vehicle Injury Data,” Computational Statistics & Data Analysis, Vol. 34 No. 3, pp. 371-386.
[53] L. T. Lam (2004), “Environmental Factors Associated with Crash-Related Mortality and Injury Among Taxi Drivers in New South Wales, Australia,” Accident Analysis and Prevention, Vol. 36, No. 5, pp. 905-908.
[54] C. H. Lee, C. R. Lin, and M. S. Chen (2001), “Sliding-Window Filtering: an Efficient Algorithm for Incremental Mining,” Proceedings of the International Conference on Information and Knowledge Management, pp. 263-270.
[55] C. H. Lee, M. S. Chen, and C. R. Lin (2003), “Progressive Partition Miner: an Efficient Algorithm for Mining General Temporal Association Rules,” IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 4, pp. 1004-1017.
[56] N. Levine, K. E. Kim, and L. H. Nitz (1995), “Daily Fluctuations in Honolulu Motor Vehicle Accidents,” Accident Analysis and Prevention, Vol. 27, No. 6, pp. 785-796.
[57] C.H. Lin, D. Y. Chiu, Y. H. Wu, and A. L. P. Chen (2005), “Mining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window,” Proceedings of the SIAM International Conference on Data Mining, pp. 68-79.
[58] J. L. Lin and M. H. Dunham (1998), “Mining Association Rules: Anti-Skew Algorithms,” Proceedings of 1998 International Conference on Data Engineering, pp. 486-493.
[59] L. Mussone, A. Ferrari, and M. Oneta (1999), “An Analysis of Urban Collisions Using an Artificial Intelligence Model,” Accident Analysis and Prevention, Vol. 31, pp. 705-718.
[60] J. S. Park, M. S. Chen, and P. S. Yu (1997), “Using a Hash-Based Method with Transaction Trimming for Mining Association Rules,” IEEE Transactions on Knowledge and Data Engineering, pp. 813-825.
[61] A. Savasere, E. Omiecinski, and S. Navathe (1995), “An Efficient Algorithm for Mining Association Rules in Large Databases,” Proceedings of the 21th International Conference on Very Large Data Bases, pp. 432-444.
[62] V. Shankar, J. Milton, and F. Mannering (1997), “Modeling Accident Frequencies as Zero-Altered Probability Processes: an empirical inquiry,” Accident Analysis and Prevention, Vol. 29, No. 6, pp. 829-837.
[63] S. Y. Sohn, S. H. Lee (2003), “Data Fusion, Ensemble and Clustering to Improve the Classification Accuracy for the Severity of Road Traffic Accidents in Korea,” Safety Science, Vol. 41, No. 1, pp. 1-14.
[64] W. G. Teng, M. S. Chen, and P. S. Yu (2003), “A Regression-Based Temporal Pattern Mining Scheme for Data Streams,” Proceedings of the 29th International Conference on Very Large Data Bases, pp. 93-104.
[65] W. G. Teng, M. S. Chen, and P. S. Yu (2004), “Resource-Aware Mining with Variable Granularities in Data Streams,” Proceedings of the 4th SIAM International Conference on Data Mining.
[66] R.C.-W. Wong and A.W.-C. Fu (2005), “Mining Top-K Itemsets over a Sliding Window Based on Zipfian Distribution,” Proceedings of the SIAM International Conference on Data Mining.