|
1.Katsuda, S., et al., Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits. Biol Pharm Bull, 2008. 31(1):p.38-44. 2.Ruilope, L.M. and R.E. Schmieder, Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens, 2008. 21(5): p.500-8. 3.Kubota, T., et al., Overexpression of tumor necrosis factor- alpha activates both anti- and pro-apoptotic pathways in the myocardium. J Mol Cell Cardiol, 2001. 33(7): p. 1331-44. 4.Brummer, E., et al., Production of IL-6, in contrast to other cytokines and chemokines, in macrophage innate immune responses: effect of serum and fungal (Blastomyces) challenge. Cytokine, 2007. 39(3): p.163-70. 5.Unal, S., et al., Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) levels and IL-6, TNF-polymorphisms in children with thrombosis. J Pediatr Hematol Oncol, 2008. 30(1): p.26-31. 6.Wakefield, T.W., et al., P-selectin and TNF inhibition reduce venous thrombosis inflammation. J Surg Res, 1996. 64(1): p.26-31. 7.Yang, J. and G.R. Stark, Roles of unphosphorylated STATs in signaling. Cell Res, 2008. 18(4): p. 443-51. 8.Lu, Y., et al., JAK/STAT and PI3K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem, 2008. 21(4): p.305-14. 9.Stephanou, A. and D.S. Latchman, STAT-1: a novel regulator of apoptosis. Int J Exp Pathol, 2003. 84(6): p. 239-44. 10.Fischer, P. and D. Hilfiker-Kleiner, Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol, 2007. 102(5): p. 393-411. 11.Nobori, K. and Y. Munehisa, [Intracellular signaling pathways for cardiac hypertrophy: ERK, JAK-STAT, S6 kinase]. Nippon Rinsho, 2007. 65 Suppl 4: p. 196-200. 12.Brown, M.D. and D.B. Sacks, Compartmentalised MAPK Pathways, in Handb Exp Pharmacol. 2008. p. 205-235. 13.Dai, X., et al., The NF-{kappa}B, p38 MAPK and STAT1 pathways differentially regulate the dsRNA-mediated innate immune responses of epidermal keratinocytes. Int Immunol, 2008. 14.Deng, J., et al., XGPR3 is a Constitutively Active Cell Surface G Protein-Coupled Receptor that Participates in Maintaining Meiotic Arrest in Xenopus Laevis Oocytes. Mol Endocrinol, 2008. 15.Schenning, M., et al., The anti-apoptotic activity associated with phosphatidylinositol transfer protein alpha activates the MAPK and Akt/PKB pathway. Biochim Biophys Acta, 2008. 16.Regan, C.P., et al., Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A, 2002. 99(14): p. 9248-53. 17.Wojcikiewicz, R.J., Regulated ubiquitination of proteins in GPCR-initiated signaling pathways. Trends Pharmacol Sci, 2004. 25(1): p. 35-41. 18.Nicol, R.L., et al., Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. Embo J, 2001. 20(11): p. 2757-67. 19.De, S., et al., IL-1 beta and IL-6 induce hyperplasia and hypertrophy of cultured guinea pig airway smooth muscle cells. J Appl Physiol, 1995. 78(4): p. 1555-63. 20.Haugen, E., et al., Parallel gene expressions of IL-6 and BNP during cardiac hypertrophy complicated with diastolic dysfunction in spontaneously hypertensive rats. Int J Cardiol, 2007. 115(1): p. 24-8. 21.Yu, C., et al., Opposing effects of proteasomes and lysosomes on LIFR: modulation by TNF. J Mol Neurosci, 2007. 32(1): p. 80-9. 22.Frantz, S., et al., Role of p38 mitogen-activated protein kinase in cardiac remodelling. Br J Pharmacol, 2007. 150(2): p. 130-5. 23.Kankaanranta, H., et al., SB 203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deprived human eosinophils. J Pharmacol Exp Ther, 1999. 290(2): p. 621-8. 24.Obata, K. and K. Noguchi, [Contribution of the primary sensory neurons and spinal glial cells to the pathomechanisms of neuropathic pain]. Brain Nerve, 2008. 60(5): p.483-92. 25.Dhingra, S., et al., p38 and ERK1/2 MAPKs mediate the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol, 2007. 293(6): p. H3524-31. 26.Wang, Y., et al., Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem, 1998. 273(4): p. 2161-8. 27.Zechner, D., et al., A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J Cell Biol, 1997. 139(1): p. 115-27. 28.Ndebele, K., et al., Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced mitochondrial pathway to apoptosis and caspase activation is potentiated by phospholipid scramblase-3. Apoptosis, 2008. 29.Araki, S., et al., Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation. Biochem Biophys Res Commun, 1990. 168(3): p. 1194-200. 30.Scheid, M.P., K.M. Schubert, and V. Duronio, Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem, 1999. 274(43): p. 31108-13. 31.Pistilli, E.E., J.R. Jackson, and S.E. Alway, Death receptor-associated pro-apoptotic signaling in aged skeletal muscle. Apoptosis, 2006. 11(12): p. 2115-26. 32.Chen, P.Y., et al., Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants. Planta, 2008. 33.Milner, A.E., et al., Induction of apoptosis by chemotherapeutic drugs: the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells. Cell Death Differ, 2002. 9(3): p. 287-300. 34.Desagher, S. and J.C. Martinou, Mitochondria as the central control point of apoptosis. Trends Cell Biol, 2000. 10(9): p. 369-77. 35.Ploner, C., et al., The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia, 2008. 22(2): p. 370-7. 36.Nakamura, M. and Y. Tanigawa, Characterization of ubiquitin-like polypeptide acceptor protein, a novel pro-apoptotic member of the Bcl2 family. Eur J Biochem, 2003. 270(20): p.4052-8. 37.Gal, A., et al., Bcl-2 or Bcl-XL gene therapy reduces apoptosis and increases plasticity protein GAP-43 in PC12 cells. Brain Res Bull, 2008. 76(4): p. 349-53. 38.Karki, P., et al., Intracellular K(+) inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death Differ, 2007. 14(12): p. 2068-75. 39.Levine, B., S. Sinha, and G. Kroemer, Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy, 2008. 4(5). 40.Ekert, P.G., et al., Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J Cell Biol, 2004. 165(6): p.835-42. 41.Li, Z., et al., Down-regulation of 14-3-3zeta suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proc Natl Acad Sci U S A, 2008. 105(1): p.162-7. 42.Racz, B., et al., PKA-Bad-14-3-3 and Akt-Bad-14-3-3 signaling pathways are involved in the protective effects of PACAP against ischemia/reperfusion-induced cardiomyocyte apoptosis. Regul Pept, 2008. 145(1-3): p. 105-15. 43.Adam, A.L., G. Kohut, and L. Hornok, Fphog1, a HOG-type MAP kinase gene, is involved in multistress response in Fusarium proliferatum. J Basic Microbiol, 2008. 48(3): p. 151-9. 44.Won, C.K., et al., Estradiol prevents the injury-induced decrease of Akt activation and Bad phosphorylation. Neurosci Lett, 2005. 387(2): p. 115-9. 45.Chen, D.B., L. Wang, and P.H. Wang, Insulin-like growth factor I retards apoptotic signaling induced by ethanol in cardiomyocytes. Life Sci, 2000. 67(14): p. 1683-93. 46.Velloso, C.P., Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol, 2008. 154(3): p. 557-68. 47.Fernandez-Cancio, M., et al., IGF-I and not IGF-II expression is regulated by glucocorticoids in human fetal epiphyseal chondrocytes. Growth Horm IGF Res, 2008. 48.Li, Z., T.X. Gu, and Y.H. Zhang, Hepatocyte growth factor combined with insulin like growth factor-1 improves expression of GATA-4 in mesenchymal stem cells cocultured with cardiomyocytes. Chin Med J (Engl), 2008. 121(4): p. 336-40. 49.Thornburg, K.L., S. Louey, and G.D. Giraud, The role of growth in heart development. Nestle Nutr Workshop Ser Pediatr Program, 2008. 61: p. 39-51. 50.Isgaard, J. and C.H. Bergh, Clinical potential of growth hormone in the treatment of congestive heart failure. BioDrugs, 1999. 12(4): p. 245-50. 51.Yamamura, T., et al., IGF-I differentially regulates Bcl-xL and Bax and confers myocardial protection in the rat heart. Am J Physiol Heart Circ Physiol, 2001. 280(3): p. H1191-200. 52.Samarel, A.M., IGF-1 Overexpression rescues the failing heart. Circ Res, 2002. 90(6): p. 631-3. 53.Li, Q., et al., Insulin-like growth factor I deficiency prolongs survival and antagonizes paraquat-induced cardiomyocyte dysfunction: role of oxidative stress. Rejuvenation Res, 2007. 10(4): p. 501-12. 54.Suleiman, M.S., R.J. Singh, and C.E. Stewart, Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacol Ther, 2007. 114(3): p. 278-94. 55.Aikawa, R., et al., Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation, 2000. 102(23): p. 2873-9. 56.Tavridou, A., et al., Antiatherosclerotic Properties of EP2302, a Novel Squalene Synthase Inhibitor, in the Cholesterol-fed Rabbit. J Cardiovasc Pharmacol, 2008. 57.Yang, J., et al., Effect of niacin on adipocyte leptin in hypercholesterolemic rabbits. Cardiovasc Pathol, 2008. 58.Prasad, K., Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Atherosclerosis, 2008. 197(1): p. 34-42. 59.Ehara, S., et al., Small coronary calcium deposits and elevated plasma levels of oxidized low density lipoprotein are characteristic of acute myocardial infarction. J Atheroscler Thromb, 2008. 15(2): p. 75-81. 60.Mohty, D., et al., Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol, 2008. 28(1): p. 187-93. 61.Guan, S. and B. Wang, Effects of fosinopril and valsartan on expressions of ICAM-1 and NO in human umbilical vein endothelial cells. Chin Med J (Engl), 2003. 116(6): p. 923-7. 62.Napoli, C., Low density lipoprotein oxidation and atherogenesis: from experimental models to clinical studies. G Ital Cardiol, 1997. 27(12): p. 1302-14. 63.Zhao, S.P. and D.Y. Xu, Oxidized lipoprotein(a) enhanced the expression of P-selectin in cultured human umbilical vein endothelial cells. Thromb Res, 2000. 100(6): p. 501-10. 64.Wang, J.S., et al., Exercise paradoxically modulates oxidized low density lipoprotein-induced adhesion molecules expression and trans-endothelial migration of monocyte in men. Thromb Haemost, 2005. 94(4): p. 846-52. 65.Clinton, S.K., et al., Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol, 1992. 140(2): p. 301-16. 66.dos Santos, M.G., et al., Risk factors for the development of atherosclerosis in childhood and adolescence. Arq Bras Cardiol, 2008. 90(4): p. 276-283. 67.Gudmundsdottir, I.J., et al., Role of the endothelium in the vascular effects of the thrombin receptor (protease-activated receptor type 1) in humans. J Am Coll Cardiol, 2008. 51(18): p. 1749-56. 68.Getz, G.S. and C.A. Reardon, Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol, 2006. 26(2): p. 242-9. 69.Benner, J., et al., Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation. Water Res, 2008. 70.Pronk, W., M. Biebow, and M. Boller, Electrodialysis for recovering salts from a urine solution containing micropollutants. Environ Sci Technol, 2006. 40(7): p.2414-20. 71.Pantos, C., et al., Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol, 2008. 103(4): p. 308-18. 72.Xu, Z., et al., Pravastatin attenuates left ventricular remodeling and diastolic dysfunction in angiotensin II-induced hypertensive mice. J Cardiovasc Pharmacol, 2008. 51(1): p.62-70. 73.Kapoun, A.M., et al., B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res, 2004. 94(4): p. 453-61. 74.Matsuda, F., et al., cFLIP Regulates Death Receptor-mediated Apoptosis in an Ovarian Granulosa Cell Line by Inhibiting Procaspase-8 Cleavage. J Reprod Dev, 2008. 75.Chen, X.L., et al., Involvement of PI3K/AKT/GSK3beta pathway in tetrandrine-induced G1 arrest and apoptosis. Cancer Biol Ther, 2008. 7(7). 76.Durlach, J., M. Bara, and A. Guiet-Bara, Magnesium level in drinking water and cardiovascular risk factor: a hypothesis. Magnesium, 1985. 4(1): p. 5-15. 77.Hewitt, D. and L.C. Neri, Development of the ''Water Story'': some recent Canadian studies. J Environ Pathol Toxicol, 1980. 4(2-3): p. 51-63.
|