|
[1]X. Chen, Y. Zheng, Y. Chen, Q. Jin, W. Sun, E. Chang, and W. Y. Ma. 2014. Indoor air quality monitoring system for smart buildings. In Proceedings of the 16th ACM International Conference on Ubiquitous Computing. [2]T. H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3rd ed.), MIT Press. [3]S. Donald. A two-dimensional interpolation function for irregularly-spaced data. In Proc. of the National Conference. pp. 517–524. 1968. [4]S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, and B. Nath. 2013. Real-time air quality monitoring through mobile sensing in metropolitan areas. In Proceeding of the 2nd ACM SIGKDD International Workshop on Urban Computing. [5]A. V. Donkelaar, R. V. Martin, and R. J. Park (2006), Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing, J. Geophys. Res., 111, D21201. [6]W. Du, Z. Xing, M. Li, B. He, L. H. C. Chua, and H. Miao. Optimal sensor placement and measurement of wind for water quality studies in urban reservoirs. In Proc. of IEEE International Symposium on Information Processing in Sensor Networks ISPN, 2014. [7]D. Erdös, V. Ishakian, A. Lapets, E. Terzi, and A. Bestavros. The filter-placement problem and its application to minimizing information multiplicity. In Proc. VLDB 2012. [8]J. Froehlich, J. Neumann, and N. Oliver. 2009. Sensing and predicting the pulse of the city through shared bicycling. In Proceedings of the 21st International Joint Conference on Artificial Intelligence. 1420– 1426. [9]Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani. 2010. An energy-efficient mobile recommender system. In Proceedings of 16th SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 899–908. [10]A. Guehnemann, R. P. Schaefer, K. U. Thiessenhusen, and P. Wagner. 2004. Monitoring Traffic and Emissions by Floating Car Data. Institute of Transport Studies, Australia. [11]D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. Participatory Air Pollution Monitoring Using Smartphones. In the 2nd International Workshop on Mobile Sensing. [12]H.-P. Hsieh, and C.-T. Li. Estimating Potential Customers Anywhere and Anytime on Location-based Social Networks. The 30th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2015. [13]H.-P. Hsieh and C.-T. Li. Mining and Planning Time-aware Routes Using Location Check-in Data. ACM International Conference on Knowledge and Information Management (CIKM''14), 2014. [14]H.-P. Hsieh, C.-T. Li and S.-D. Lin. Measuring and Recommending Time-Sensitive Routes from Location-based Data. ACM TIST 2014. [15]H.-P. Hsieh and C.-T. Li. Constructing Routes with User Preference from Location Check-in Data. ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2013), 2013. [16]H.-P. Hsieh, C.-T. Li and X. Gao. T-gram: a Time-aware Language Model to Predict Human Mobility. AAAI International Conference on Web and Social Media (ICWSM''15), 2015. [17]H.-P. Hsieh, S.-D. Lin and Y. Zheng. Inferring Air Quality for Station Location Recommendation Based on Urban Big Data. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD''15). 2015. [18]J. Hooyberghs, C. Mensink, G. Dumont, F. Fierens, O. Brasseur (2005). Aneural network forecast for daily average PM10 concentrations in Belgium. Atmospheric Environment 39 (2005) 3279-3289. [19]Y. Jiang, K. Li, L. Tian, R. Piedrahita, X. Yun, O. Mansata, Q. Lv, R. P. Dick, M. Hannigan, and L. Shang. Maqs: A personalized mobile sensing system for indoor air quality. In Proc. of UbiComp 2011. [20]D. Karamshuk, A. Noulas, S. Scellato, V. Nicosia, and C. Mascolo. Geo-spotting: mining online location-based services for optimal retail store placement. In Proc. of KDD 2013. [21]A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient Sensor Placement Optimization for Securing Large Water Distribution Networks. Journal of Water Resources Planning and Management, 134(6), 2008. [22]A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin. Simultaneous Optimization of Sensor Placements and Balanced Schedules. IEEE Transactions on Automatic Control, 2011. [23]L. N. Lamsal, R. V. Martin, A. V. Donkelaar, M. Steinbacher, E. A. Celarier, E. Bucsela, E. J. Dunlea, and J. P. Pinto (2008), Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument, J. Geophys. Res., 113, D1630. [24]Wei-Zen Lu, Wen-Jian Wang (2005). Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 59: 693-701. [25]B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning Geographical Preferences for Point-of-Interest Recommendation. ACM KDD 2013. [26]X. Liu, Y. Liu, K. Aberer, and C. Miao. Personalized point-of-interest rec-ommendation by mining users’ preference transition. In ACM CIKM 2013. [27]S. Ma, Y. Zheng, and O. Wolfson. 2013. T-Share: A large-scale dynamic taxi ridesharing service. In Proceedings of IEEE International Conference on Data Engineering. [28]R. V. Martin. Satellite remote sensing of surface air quality, Atmospheric Environment (2008), doi:10.1016. [29]A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Where next: a location predictor on trajectory pattern mining. ACM KDD 2009. [30]H. Niska, T. Hiltunen, A.Karppinen, J. Ruuskanen, and M. Kolehmainen (2004). Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence 17, 159-167. [31]A. Noulas, S. Scellato, N. Lathia, and C. Masolo. Mining User Mobility Features for Next Place Prediction in Location-based Services. In IEEE ICDM 2012. [32]M. A. Oliver and R. Webster. Kriging: a method of interpolation for geographical information system. INT. J. Geographical Information Systems, VOL. 4, No. 3, 313-332, 1990. [33]P. Perez, R. Palacios and A. Castillo (2004). Carbon Monoxide Concentration Forecasting in Santiage, Chile. Journal of the air and waste management association 54:908-913. ISSN 1047-3289. 2004. [34]M. Pourali and A. Mosleh. A Functional Sensor Placement Optimization Method for Power Systems Health Monitoring, IEEE Transactions on Industrial Applications, 49(4), 2013. [35]R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu. 2013. Ear-phone: A context-aware noise mapping using smart phones. In eprint arXiv:1310.4270. [36]C. Ratti, S. Sobolevsky, F. Calabrese, C. Andris, J. Reades, M. Martino, R. Claxton, and S. H. Strogatz. 2010. Redrawing the map of Great Britain from a network of humani. PLoS ONE 5, 12. [37]S. Rinzivillo, S. Mainardi, F. Pezzoni, M. Coscia, D. Pedreschi, and F. Giannotti. 2012. Discovering the geographical borders of human mobility. K unstl Intell 26, 253–260. [38]A. Sadilek, H. Kautz, and J. P. Bigham. Finding your friends and follow-ing them to where you are. ACM WSDM 2012. [39]J.S. Scire, D.G. Strimaitis and R.J. Yamartino, 2000b: User’s Guide for the CALPUFF Dispersion Model, (Version 5.0), Earth Tech, Inc. [40]S. Silvia, B. Ostermaier, and A. Vitaletti. 2008. First experiences using wireless sensor networks for noise pollution monitoring. In Proceedings of the Workshop on Real-World Wireless Sensor Networks. ACM, 61–65. [41]K. Watkins, B. Ferris, A. Borning, S. Rutherford, and D. Layton. 2011. Where is my bus? Impact of mobile real-time information on the perceived and actual wait time of transit riders. Transportation Research Part A 45, 839–848. [42]S. Vardoulakis, B. E. A. Fisher, K. Pericleous, N. Gonzalez-Flesca. Modelling air quality in street canyons: a review. Atmospheric Environment 37 (2003) 155-182. [43]M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting geographical influence for collaborative point-of-interest recommendation. ACM SIGIR 2011. [44]J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun. 2011. Where to find my next passenger? In Proceedings of 13th ACM International Conference on Ubiquitous Computing. ACM, 109–118. [45]N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. 2014. T-Finder: A recommender system for finding passengers and vacant taxis. IEEE Transactions on Knowledge and Data Engineering. [46]Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-of-interest recommendation. ACM SIGIR 2013. [47]Y. Zheng, F. Liu, H- P. Hsieh, U-Air: When Urban Air Quality Inference Meets Big Data. In Proc. of KDD 2013. [48]Y. Zheng, L. Capra, O. Wolfson, H. Yang. Urban Computing: concepts, methodologies, and applications. ACM Transaction on Intelligent Systems and Technology (ACM TIST). 5(3), 2014. [49]Y. Zheng, X. Chen, Q. Jin, Y. Chen, X. Qu, X. Liu, E. Chang, W-Y. Ma, Y. Rui, W. Sun. A Cloud-Based Knowledge Discovery System for Monitoring Fine-Grained Air Quality. MSR-TR-2014-40. [50]X. Zhu, Z. Ghahramani and J. Lafferty. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. ICML 2003. [51]J. Zimmerman, A. Tomasic, C. Garrod, D. Yoo, C. Hiruncharoenvate, R. Aziz, N. R. Thiruvengadam, Y. Huang, and A. Steinfeld. 2011. Field trial of Tiramisu: Crowd-sourcing bus arrival times to spur co-design. In Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems. ACM, 1677–1686.
|