Abdel-Basset, R., Friedl, T., Mohr, K.I., Rybalka, N., and Martin, W., “High growth rate, photosynthesis rate and increased hydrogen(ases) in manganese deprived cells of a newly isolated Nostoc-like cyanobacterium (SAG 2306),” International Journal of Hydrogen Energy, Vol. 36, No. 19, pp. 12200-12210(2011).
Ajayi, F.F., Kim, K.Y., Chae, K.J., Choi, M.J., Kim, S.Y., Chang, I.S., and Kim I.S., “Study of hydrogen production in light assisted microbial electrolysis cell operated with dye sensitized solar cell,” International Journal of Hydrogen Energy, Vol. 34, No. 23, pp. 9297-9304(2009).
Argun, H., and Kargi, F., “Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview,” International Journal of Hydrogen Energy, Vol. 36, No. 13, pp. 7443-7459(2011).
Argun, H., Kargi, F., and Kapdan, I.K., “Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation,” International Journal of Hydrogen Energy, Vol. 34, No. 5, pp. 2195-2200(2009).
Arifin, K., Majlan, E.H., Daud, W.R.W., and Kassim, M.B., “Bimetallic complexes in artificial photosynthesis for hydrogen production: A review,” International Journal of Hydrogen Energy, Vol. 37, No. 4, pp. 3066-3087(2010).
Bond, D.R., and Lovley, D.R., “Electricity production by Geohacter sulfurreducens attached to electrodes,” Applied and Environmental Microbiology, Vol. 69, No. 3, pp. 1548-1555(2003).
Brennan, L., and Owende, P., “Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renew,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, pp. 557-577(2010).
Cai, J., and Wang, G., “Hydrogen production by a marine photosynthetic bacterium, Rhodovulum sulfidophilum P5, isolated from a shrimp pond,” International Journal of Hydrogen Energy, Vol. 37, No. 20, pp. 15070-15080(2012).
Call, D. and Logan, B.E., “Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane,” Environmental Science & Technology, Vol. 42, No. 9, pp. 3401-6(2008).
Chae, K.J., Choi, M.J., Kim, K.Y., Ajayi, F.F., Chang, I.S., and Kim, I.S., “Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells,” International Journal of Hydrogen Energy, Vol. 35, No. 24, pp. 13379-13386(2010).
Chang, I.S., Moon, H.O., Bretschger, J.K., Jang, J.K., Park, H.I., Nealson, K.H., and Kim, B.H., “Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells,” Journal of Microbiology and Biotechnology, Vol. 16, No. 2, pp. 163-177(2006).
Cheng, J., Su, H., Zhou, J., Song, W., and Cen, K., “Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation,” International Journal of Hydrogen Energy, Vol. 36, No. 3, pp. 2093-2101(2011).
Cheng, S., and Logan, B.E., “High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing,” Bioresource Technology, Vol. 102, No. 3, pp. 3571-3574(2011).
Chong, M.L., Sabaratnam, V., Shirai, Y., and Hassan, M.A., “Biohydrogen production from biomass and industrial wastes by dark fermentation,” International Journal of Hydrogen Energy, Vol. 34, No. 8, pp. 3277-3287(2009).
Cormos C.C., “Hydrogen production from fossil fuels with carbon capture and storage based on chemical looping systems,” International Journal of Hydrogen Energy, Romania, Vol. 36, No. 10, pp. 5960-5971(2011).
Cristiani, P., Carvalho, M.L., Guerrini, E., Daghio, M., Santoro, C., and Li, B., “Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells,” Bioelectrochemistry, Vol. 92, pp. 6-13(2013).
Cusick, R.D., Kiely, P.D., and Logan, B.E., “A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters,” International Journal of Hydrogen Energy, Vol. 35, No. 17, pp. 8855-8861(2010).
Das, D., and Veziroglu, T. N., “Hydrogen production by biological processes: a survey of literature,” International Journal of Hydrogen Energy, Vol. 26, No. 1, pp. 13-28(2001).
Dasgupta, C.N., Gilbert, J. J., Lindblad, P., Heidorn, T., Borgvang, S.A., Skjanes, K., and Das, D., “Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production,” International Journal of Hydrogen Energy, Vol. 35, No. 19, pp. 10218-10328(2010).
Elsevier B.V., “FUELS – HYDROGEN PRODUCTION | Photoelectrolysis,” Encyclopedia of Electrochemical Power Sources, pp. 369-383(2009).
Evans, A., Strezov, V., and Evans, T, J., “Assessment of sustainability indicators for renewable energy technologies,” Renewable and Sustainable Energy Reviews, Australia, Vol. 13, No. 5, pp. 1082-1088(2009).
Fan, B., Zhu, S.k., Feng, Y.y., Zhang, Y., and Zhu, G.y., “Rapid Determination of Internal Resistance in an Electricigenic Microorganism Reaction System,” Environmental Science, Vol. 31, No. 12, pp. 3093-8(2010).
Fenga, Y., Yanga, Q., Wanga, X., and Logana, B, E., “Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells,” Journal of Power Sources,” Vol. 195, No. 7, pp. 1841-1844(2010).
Finneran, K.T., Johnsen, C.V., and Lovley, D.R., “Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III),” International Journal of Systematic and Evolutionary Microbiology, Vol. 53, No. 3, pp. 669-73(2003).
Gil-Carrera, L., Escapa, A., Moreno, R., and Moran, A., “Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell,” Journal of Environmental Management, Vol. 122, No. 15, pp. 1-7(2013).
Girbal, L., Croux, C., Vasconcelos, I., Soucaille, P., “Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824,” FEMS Microbiology Reviews, Vol. 17, No. 3, pp. 287-297(1997).
Guo, X., Liu, J., and Xiao, B., “Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells,” International Journal of Hydrogen Energy, China, Vol. 38, No. 3, pp. 1342-1347(2013).
Guwy, A.J., Dinsdale, R.M., Kim, J.R., Massanet-Nicolau, J., and Premier, G., “Fermentative biohydrogen production systems integration,” Bioresource Technology, Vol. 102, No. 18, pp. 8534-8542(2011).
Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I., “Sustainable fermentative hydrogen production:challenges for process optimization,” International Journal of Hydrogen Energy, Vol. 27, No. 11-12, pp. 1339-1347(2002).
Hawkes, F.R., Forsey, H., Premier, G.C., Dinsdale, R.M., Hawkes, D.L., Guwy, A.J., Maddy, J., Cherryman, S., Shine, J., and Auty D., “Fermentative production of hydrogen from a wheat flour industry co-product,” Bioresource Technology, Vol. 99, No. 11, pp. 5020-5029(2008).
He, Z., Minteer, S.D., and Angenent, L.T., “Electricity generation from artificial wastewater using an upflow microbial fuel cell,” Environmental Science & Technology, Vol. 39, No. 14, pp. 5262-5267(2005).
Hirano, S., Kim, J., and Srinivasan, S., “High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes,” Electrochimica Acta, Vol. 42, No. 10, pp. 1587-1593(1997).
Hu, H., Fan, Y., and Liu, H., “Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts,” International Journal of Hydrogen Energy, Vol. 34, No. 20, pp. 8535-8542(2009).
Hung, C.H., Chang, Y.T., and Chang, Y.J., “Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems - A review,” Bioresource Technology, Taiwan, Vol. 102, No. 18, pp. 8437-8444(2011).
Idania, V.V., and He’ctor M., P.V., “Hydrogen production by fermentative consortia,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 5, pp. 1000-1013(2009).
Jia, Y.H., Ryu, J.H., Kim, C.H., Lee, W.K., Tran, T.V.T., Lee, H.L., Zhang, R.H., and Ahn, D.H., “Enhancing hydrogen production efficiency in microbial electrolysis cell with membrane electrode assembly cathode,” Vol. 18, No. 2, pp. 715-719(2012).
Jin, C., Yang, C., Zhao, F., Cui, D., and Chen, F., “La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells,” International Journal of Hydrogen Energy, USA, Vol. 36, No. 5, pp. 3340-3346(2011).
Jr, G.B.A.., Shannon, R.D., White, J.R., Martens, C.S., and Alperin, M.J., “Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction,” Biogeochemistry, Vol. 62, No. 1, pp. 19-37(2003).
Kan, E., “Effects of pretreatments of anaerobic sludge and culture conditions on hydrogen productivity in dark anaerobic fermentation,” Renewable Energy, Vol. 49, pp. 227-231(2013).
Karadag, D., “Anaerobic H2 production at elevated temperature (60℃) by enriched mixed consortia from mesophilic sources,” International Journal of Hydrogen Energy, Vol. 36, No. 1, pp. 458-465(2011).
Kim, M., Yang, Y., Morikawa-Sakura, M.S., Wang, Q., Lee, M.V., Lee, D.Y., Feng, C., Zhou, Y., and Zhang, Z., “Hydrogen production by anaerobic co-digestion of rice straw and sewage sludge,” International Journal of Hydrogen Energy, Vol. 37, No. 4, pp. 3142-3149(2012).
Kong, X., Sun, Y., Yuan, Z., Li, D., Li, D., and Li, Y., “Effect of cathode electron-receiver on the performance of microbial fuel cells,” International Journal of Hydrogen Energy, Vol. 35, No. 13, pp. 7224-7227(2010).
Kreuer, K.D., “On the complexity of proton conduction phenomena,” Solid state ionics, Vol. 136-137, No. 2, pp. 149-160(2000).
Lamp, J.L., Guest, J.S., Naha, S., Radavich, K.A., Ellis, M.W., and Puri, I.K., “Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells,” Journal of Power Sources, Vol. 14, No. 15, pp. 5829-5834(2011).
Levin, D.B., Pitt, L., and Love, M., “Biohydrogen production: prospects and limitations to practical application,” International Journal of Hydrogen Energy, Vol. 29, No. 2, pp. 173-185(2004).
Li, J., Fu, Q., Liao, Q., Zhu, X., Ye, D, D., and Tian, X., “Persulfate: A self-activated cathodic electron acceptor for microbial fuel cells,” Journal of Power Sources, Vol. 194, No. 1, pp. 269-274(2009).
Liang, D.W., Peng, S.K., Lu, S.F., Liu, Y.Y., Lan, F., and Xiang, Y., “Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization,” Bioresource Technology, Vol. 102, No. 23, pp. 10881-10885(2011).
Liu, H., Grot, S., amd Logan, B.E., “Electrochemically assisted microbial production of hydrogen from acetate,” Environmental Science & Technology, Vol. 39, No. 11, pp. 4317-4320(2005).
Liu, L., Tsyganova, O., Lee, D.J., Su, A., Chang, J.S., Wang, A., and Ren, N., “Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures,” International Journal of Hydrogen Energy, Vol. 37, No. 20, pp. 15792-15800(2012).
Liu, Q., Zhang, X.L., Jun, Z., Zhao, A.H., Chen, S.P., Liu, F., Tai, J., Liu, J.Y., and Qian, G.R., “Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions, ” Bioresource Technology, Vol. 113, pp. 37-43(2012).
Liu, W., Huang, S., Zhou, A., Zhou, G., Ren, N., Wang, A., and Zhuang, G., “Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge,” International Journal of Hydrogen Energy, Vol. 37, No. 18, pp. 13859-13864(2012).
Lo, H.M., Liu, M.H., Pai, T.Y., Liu, W.F., Lin, C.Y., Wang, S.C., Banks, C.J., Hung, C.H., Chiang, C.F., Lin, K.C., Chen, P.H., Chen, J.K., Chiu, H.Y., Su, M.H., Kurniawan, T.A., Wu, K.C., Hsieh, C.Y., and Hsu, H.S., “Biostabilization assessment of MSW co-disposed with MSWI fly ash in anaerobic bioreactors,” Journal of Hazardous Materials, Vol. 162, No. 2-3, pp. 1233-1242(2009).
Logan, B.E., Aelterman, P., Hamelers, B., Rozendal, R., Schroeder, U., Keller, J., Freguiac, S., Verstraete, W., and Rabaey, K. “Microbial fuel cells: methodology and technology,” Environmental Science & Technology, Vol. 40, No. 17, pp. 5181-5190(2006).
Logan, B.E., Murano, C., Scott, K., Gray, N.D., and Head, I.M., “Electricity generation from cysteine in a microbial fuel cell,” Water Research, Vol. 39, No. 5, pp. 942-952(2005).
Lu L., Ren, N., Zhao, X., Wang, H., Wu, D., and Xing, D., “Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells,” Energy & Environmental Science, Vol. 12, No. 4, pp. 1329-1336(2011).
Lu, L., Xing, D., Liu, B., and Ren, N., “Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells,” Water research, Vol. 46, No. 4, pp. 1015-1026(2012).
Luo, Y., Liu, G., Zhang, R., and Zhang, C., “Power generation from furfural using the microbial fuel cell,” Journal of Power Sources, Vol. 195, No. 1, pp. 190-194(2010).
Lyon, D.Y., Buret, F., Vogel, T.M., and Monier, J.M., “Is resistance futile Changing external resistance does not improve microbial fuel cell performance,” Bioelectrochemistry, Vol. 78, No. 1, pp. 2-7(2010).
Manish, S., and Banerjee, R., “Comparison of biohydrogen production processes,” International Journal of Hydrogen Energy, India, Vol. 33, No. 1, pp. 279-286(2008).
Masojidek, J., Kobližek, M., and Torzillo, G., “Photosynthesis in microalgae”, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Edited by Amos Richmond, Blackwell Science, pp. 20-39(2004).
Min, B., Chang, S., and Logan, B. E., “Electricity generation using membrane and salt bridge microbial fuel cells,” Water Research, Vol. 39, No. 9, pp.1675-1686(2005).
Min, B., Kim, J., Oh, S., Regan, J.M., and Logan, B.E., “Electricity generation from swine wastewater using microbial fuel cells,” Water Research, Vol. 39, No. 20, pp. 4961-4968(2005).
Moon, H., Chang, I.S., Jang, J.K., and Kim, B.H., “Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation,” Biochemical Engineering Journal, Vol. 27, No. 1, pp. 59-65(2005).
Ozmihci, S., Kargi, F., and Cakir, A., “Thermophilic dark fermentation of acid hydrolyzed waste ground wheat for hydrogen gas production,” International Journal of Hydrogen Energy, Vol. 36, No. 3, pp. 2111-2117(2011).
Pandit, S., Sengupta, A., Kale, S., and Das,D., “Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane,” Bioresource Technology, Vol. 102, No. 3, pp. 2736-2744(2011).
Pandit, S., Sengupta, A., Kale, S., and Das,D., “Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane,” Bioresource Technology, Vol. 102, No. 3, pp. 2736-2744(2011).
Park, D.H., and Zeikus, J.G., “Improved fuel cell and electrode designs for producing electricity from microbial degradation,” Biotechnology and Bioengineering, Vol. 81, No. 3, pp. 348-355(2003).
Park, D.H., and Zeikus, J.G., “Improved fuel cell and electrode designs for producing electricity from microbial degradation,” Biotechnol Bioeng, Vol. 81, No. 3, pp. 348-55(2003).
Park, H.S., Kim, B.H., Kim, H.S., Kim, H.J., Kim, G.T., Kim, M., Chang, I.S., Park, Y.K., and Chang, H.I., “A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell,” Anaerobe, Vol. 7, No. 6, pp. 297-306(2001).
Patrick, D., Kiely, Cusick, R., Douglas, F., Call, Priscilla, A., Selembo, John, M., Regan, Logan, B.E., “Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters,” Bioresource Technology, Vol. 102, No. 1, pp. 388-394(2011).
Rabaey, K., and Verstraete, W. “Microbial fuel cells: novel biotechnology for energy generation,” Trends Biotechnology, Vol. 23, No. 6, pp. 291-298(2005).
Ratledge, C., “Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production,” Biochimie, Vol. 86, No. 11, pp. 807-815(2004).
Rozendal, R.A., Jeremiasse, A.W., Hamelers, H.V.M., and Buisman, C.J.N., “Hydrogen Production with a Microbial Biocathode,” Environmental Science & Technology, Vol. 42, No. 2 , pp. 629-634(2008).
Santoro, C., Ieropoulos, I., Greenman, J., Cristiani, P., Vadas, T., Mackay, A., and Li, B., “Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine,” Journal of Power Sources, Vol. 238, No. 15, pp. 190-196(2013).
Shi, X., Feng, Y., Wang, X., Lee, H., " Liu, J., Qu, Y., He, W., Kumar, S.M.S., and Ren, N., “Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air–cathode microbial fuel cells,” Bioresource Technology, Vol. 108, pp. 89-93(2012).
Sinha, P., and Pandey, A., “An evaluative report and challenges for fermentative biohydrogen production,” International Journal of Hydrogen Energy, Vol. 36, No. 13, pp. 7460-7478(2011).
Song, T., Wu, J., Shen, L., and Xiao, J., “Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds,” International Journal of Hydrogen Energy, China, Vol. 36, pp. 258–267(2012).
Srinivasan, S.; Ticianelli, E.A.; Derouin, C.R.; and Redondo, A., “Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes,” Journal of Power Sources, Vol. 22, No. 3-4, pp. 359-375(1988).
Su, H., Cheng, J., Zhou, J., Song, W., and Cen, K., “Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency,” International Journal of Hydrogen Energy, Vol. 34, No. 21, pp. 8846-8853(2009).
Taylor, E., J., Anderson, E.B., and Vilambi, N.R.K., “Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange-Membrane Fuel Cells,” Journal of the Electrochemical Society, Vol. 139, No. 5, pp. L45-L46(1992).
Thygesen, A., Poulsen, F.W., Angelidaki, I., Min, B., and Bjerre, A.B., “Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate,” Biochemical Engineering Journal, Vol. 35, No. 11, pp. 4732-4739(2011).
Torres, C.I., Marcus, A.K., and Rittmann, B.E., “Kinetics of consumption of fermentation products by anode-respiring bacteria,” Applied Microbiology and Biotechnology, Vol. 77, No. 3, pp. 689-697(2007).
Wagner, R.C., Regan, J.M., Oh, S.E., Zuo, Y., and Logan, B.E., “Hydrogen and methane production from swine wastewater using microbial electrolysis cells,” Water Research, Vol. 43, No. 5, pp. 1480-1488(2009).
Wei, L., Han H., and Shen, H., “Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell,” International Journal of Hydrogen Energy, Vol. 37, No. 17, pp. 12980-12986(2012).
Wen, Q., Wu, Y., Cao, D., Zhao, L., and Sun, Q., “Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater,” Bioresource Technology, Vol. 100, No. 18, pp. 4171-4175(2009).
Wukovits, W., and Schnitzhofer, W., “FUELS – HYDROGEN PRODUCTION | Biomass: Fermentation,” Encyclopedia of Electrochemical Power Sources, pp. 268-275(2009).
Yokoi, H., Mori, S., Hirose, J., Hayashi, S., and Takasaki, Y., “H2 production from starch by a mixed culture of Clostridum butyricum and Rhodobacter sp. M-19,” Biotechnol, Vol. 20, No. 9, pp. 895-899(1998).
Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., and Takasaki, Y., “H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes,” Biotechnol Lett, Vol. 20, No. 2, pp. 143-147(1998).
Yuan, Y., Ahmed,J., and Kim,S., “Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells,” Journal of Power Sources, Vol. 196, No. 3, pp. 1103-1106(2011).
Zahedi, S., Sales, D., Romero L.I., and Solera R., “Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: Influence of organic loading rate and microbial content of the solid waste, ” Bioresource Technology, Vol. 129, pp. 85-91(2013).
Zhang, G., Wang, K., Zhao, Q., Jiao, Y., and Lee, D.J., “Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells,” Bioresource Technology, Vol. 118, pp. 249-256(2012).
Zhang, G., Zhao, Q., Jia,Y., Wang, K., Lee, D.J., and Ren, N., “Biocathode Microbial Fuel Cell for Efficient Electricity Recovery from Dairy Manure,” Biosensors and Bioelectronics, Vol. 31, No. 1, pp. 537-543(2012).
Zhang, G., Zhao, Q., Yan Jiao, Wang, K., Lee, D.J., and Ren, N., “Efficient electricity generation from sewage sludge using biocathode microbial fuel cell,” Water Research, Vol. 46, No. 1, pp. 43-52(2012).
Zhang, Y., and Angelidaki, I., “Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors,” Water Research, Denmark, Vol. 46, No. 8, pp. 2727-2736(2012).
Zhou, M., Chi, M., Luo, J., He, H., and Jin, T., “An overview of electrode materials in microbial fuel cells,” Journal of Power Sources, Vol. 10, No. 15, pp. 4427-4435(2011).
Zhou, M., Chi, M., Wang, H., and Jin, T., “Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells,” Biochemical Engineering Journal, Vol. 60, No. 15, pp. 151-155(2012).
Zhu, N., Chen, X., Zhang, T., Wu, P., Li, P., and Wu, J., “Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes,” Bioresource Technology, Vol. 102, No. 1, pp. 422-426(2011).
Zhu, Y., and Yang, S.T., “Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum,” Journal of Biotechnology, Vol. 110, No. 2, pp. 143-157(2004).
Zhuang, L., Zhou, S., Li, Y. Yuan, Y., “Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode,” Bioresource Technology, Vol. 101, No. 10, pp. 3514-3519(2010).
Zuo, Y., Xing, D., Regan, J.M., and Logan, B.E., “Isolation of the Exoelectrogenic Bacterium Ochrobactrum anthropi YZ-1 by Using a U-Tube Microbial Fuel Cell,” Appl Environ Microbiol, Vol. 74, No. 10, pp. 3130-3137(2008).
王之仲,「以梭狀芽孢桿菌進行廢棄活性污泥厭氧消化產氫」,碩士論文,國立臺灣大學化學工程研究所,台北(2002)。王思凱,「燃料型態與有機負荷對微生物燃料電池績效之影響」,碩士論文,國立臺灣海洋大學河海工程學系,台北(2008)。王思凱,「燃料型態與有機負荷對微生物燃料電池績效之影響」碩士論文,國立臺灣海洋大學河海工程學系,台北(2008)。
左 宜、左劍惡、張 薇,「利用有機物厭氧發酵生物制氫的研究進展」,碩士論文,清華大學環境科學與工程系,北京(2004)。
任維傑,「探討厭氧產氫純菌Clostridium在不同pH下之反應動力機制」,碩士論文,國立成功大學環境工程學系,台南(2006)。江泰成,「螺旋藻萃取物抑制油脂氧化及抗氧化活性之探討」,碩士論文,國立臺灣海洋大學食品科學學系,台北(2007)。吳宜曄,「以批次試驗及兩段式串聯反應槽提升甘蔗渣厭氧產氫之可行性研究」,碩士論文,國立臺中教育大學環境教育及管理所,台中(2011)。吳夏芫、宋天順、支銀芳、周楚新、俞俊傑、朱雋瑤,「小球藻生物陰極型微生物燃料電池的基礎特性」,過程工程學報,第12卷,第1期,第132-135頁(2012)。
林秋裕、林明正、周家弘,「CSTR反應槽馴養不同污泥之產氫能力探討」,第二十五屆廢水處理技術研討會論文集,第362-367頁(2000)。
柯政志,「負壓程序醱酵產氫與菌群結構分析」,碩士論文,逢甲大學化學工程學系,台中(2009)。范 平,支銀芳,吳夏芫,周楚新,「微生物燃料電池中陽極產電微生物的研究進展」,生物學通報,第46卷,第10期(2011)。
徐孝先,「焚化爐灰燼微奈米製備與特性分析及其與垃圾基質共同厭氧消化研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2008)。高敏修,「利用微生物燃料電池降解石油碳氫化合物及其產電能力研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系碩士班,雲林(2010)。張均傑,「燃料電池的原料來源」,生物產業機械,台北(2005)。
張嘉修、李國興、林屏杰、吳石乙、林秋裕,以環境生物技術生產清潔能源-氫氣,中國化學工程學會,第49卷,第6期,第85-104頁(2002)。張曉艷、滕洪輝,「以垃圾滲濾液為燃料的微生物燃料電池產電性能」,吉林大學學報(理學版),第49卷,第6期,第1162-1166頁(2011)。
郭 坤、張京京、李浩然、杜竹瑋,「微生物電解電池制氫」,化學進展,第22卷,第4期,第790-753頁(2010)。
陳 輝,「沉積型微生物燃料電池的構建及產電特性研究」,碩士論文,江南大學環境工程,江蘇(2009)。
陳仕桀,「改良式厭氧程序批次活性污泥法對厭氧產氫的影響」,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄(2009)。陳振正,「微藻生質能源潛勢之研究」,碩士論文,大仁科技大學環境管理研究所,屏東(2010)。
陳暐翰,「微藻生質能源潛勢之研究」,碩士論文,大仁科技大學環境管理研究所,屏東(2010)。曾育貞,「改質聚乙烯醇作為直接甲醇燃料電池之高分子聚電解質薄膜之研究」,碩士論文,國立台灣科技大學化學工程系,台北(2006)。曾思華,「外加電流對微生物產氫效能良窳之影響」,碩士論文,國立雲林科技大學環境與安全衛生工程系,雲林(2010)。黃至宇,「醱酵殘餘物厭氧醱酵產能之研究」,碩士論文,逢甲大學環境工程與科學學系,台中(2010)。黃昱翔,「有機廢棄物高溫固態厭氧醱酵產氫特性之研究」,碩士論文,國立中央大學環境工程研究所,桃園(2010)。黃啟裕,「纖維素產氫技術在生質能源之發展」,農業生技產業季刊,第13期,第54-60頁(2008)。黃毓涵,「小球藻最適化連續式培養之研究」,碩士論文,國立成功大學化學工程學系,台南(2009)。經濟部能源局,「能源產業技術白皮書」,經濟部,台北(2012)。
葉俊良,「在光生化反應器中以二階段策略培養微藻生產油脂之研究」,碩士論文,國立成功大學化學工程學系,台南(2006)。葉宸希,「二氧化鈦薄膜電極應用於染料敏化太陽能電池之研究」,碩士論文,國立台南大學自然科學教育研究所,台南(2006)。劉 敏、邵 軍、週 奔、周順桂、倪晉仁,「微生物產電呼吸最新研究進展」,應用與環境生物學報,第16卷,第3期(2010)。
劉大瑋,「有機廢棄物微生物燃料電池產電最佳化之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2012)。劉文宗,「有機廢水微生物電解電池產氫研究及微生物功能解析」,博士論文,哈爾濱工業大學,哈爾濱(2011)。
賴建甫,「底泥微生物燃料電池之建置及探討」,碩士論文,逢甲大學環境工程與科學學系,台中(2009)。謝 麗,馬玉龍,「微生物燃料電池中產電微生物的研究進展」,寧夏農業與林業科學技術雜誌,第52卷,第7期,第104-107頁(2011)
謝雨澄,「以螺旋藻產氧作為陰極電子接受者之微生物燃料電池產電效率研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系,雲林(2011)。