參考資料
[1]洪哲明、葉明憲、李國華、葉家舟:肺部相關複方對肺部細胞產生發炎細胞激素之研究 台灣中醫家庭醫學雜誌2007;2 (1) :25-35
[2]Fu PK, Wu CL, Tsai TH, Hsieh CL, Anti-Inflammatory and Anticoagulative Effects of Paeonol on LPS-Induced Acute Lung Injury in Rats. Evidence-Based Complementary and Alternative Medicine Volume 2012
[3]M. Chignard and V. Balloy, “Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 279, no. 6, pp. L1083–L1090, 2000.
[4]E. Abraham, “Neutrophils and acute lung injury,” Critical Care Medicine, vol. 31, no. 4, pp. S195–S199, 2003.
[5]L. B. Ware and M. A. Matthay, “The acute respiratory distress syndrome,” The New England Journal ofMedicine, vol. 342, no.18, pp. 1334–1349, 2000.
[6]D. Dreyfuss and J. D. Ricard, “Acute lung injury and bacterial infection,” Clinics in Chest Medicine, vol. 26, no. 1, pp. 105–112, 2005.
[7]G. Matute-Bello, C. W. Frevert, and T. R. Martin, “Animal models of acute lung injury,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 295, no. 3, pp.L379–L399, 2008.
[8]Wang H. M., M. Bodenstein, and K. Markstaller, “Overview of the pathology of three widely used animal models of acute lung injury,” European Surgical Research, vol. 40, no. 4, pp.305–316, 2008.
[9]H. P. M. Van Helden, W. C. Kuijpers, D. Steenvoorden et al.,“Intratracheal aerosolization of endotoxin (LPS) in the rat: a comprehensive animal model to study adult (acute) respiratory distress syndrome,” Experimental Lung Research, vol. 23, no. 4, pp. 297–316, 1997.
[10]T. Shinbori, H. Walczak, and P. H. Krammer, “Activated T killer cells induce apoptosis in lung epithelial cells and the release of pro-inflammatory cytokine TNF-α,” European Journal of Immunology, vol. 34, no. 6, pp. 1762–1770, 2004.
[11]E. A. Williams, G. J. Quinlan, P. B. Anning, P. Goldstraw, and T. W. Evans, “Lung injury following pulmonary resection in the isolated, blood- perfused rat lung,” European Respiratory Journal, vol. 14, no. 4, pp. 745–750, 1999.
[12]M. A. Matthay, T. Geiser, S. Matalon, and H. Ischiropoulos, “Oxidant-mediated lung injury in the acute respiratory distress syndrome,” Critical Care Medicine, vol. 27, no. 9, pp. 2028–2030, 1999.
[13]P. Enkhbaatar, K.Murakami, K. Shimoda et al., “The inducible nitric oxide synthase inhibitor BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 7, pp. 1021–1026, 2003.
[14]A. Kobayashi, S. Hashimoto, K. Kooguchi et al., “Expression of inducible nitric oxide synthase and inflammatory cytokines in alveolar macrophages of ARDS following sepsis,” Chest, vol. 113, no. 6, pp. 1632–1639, 1998.
[15]A. S. Kristof, P. Goldberg, V. Laubach, and S. N. A. Hussain, “Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 6, pp. 1883–1889, 1998.
[16]H. M. Razavi, R. Werhun, J. A. Scott et al., “Effects of inhaled nitric oxide in a mouse model of sepsis-induced acute lung injury,” Critical Care Medicine, vol. 30, no. 4, pp. 868–873, 2002.
[17]Liu, Y.; Wu, H.; Nie, Y. C.; Chen, J. L.; Su, W. W.; Li, P. B. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway. Int. Immunopharmacol. 2011, 11, 1606−1612.
[18]R. L. Zemans, S. P. Colgan, and G. P. Downey, “Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury,” American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 5, pp. 519–535, 2009.
[19]Lu MC, Du YC, Chuu JJ, Hwang SL, Hsieh PC, Hung CS, Chang FR, Wu YC. Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A. Arch Toxicol. 2009 Feb;83 (2) :121-9.
[20]CHEN YC, LIU YL, LI FY, CHANG CI, WANG SY, LEE KY, LI SL, CHEN YP, JINN TR, TZEN JT Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids. Acta Pharmacologica Sinica (2011) 32: 904–911
[21]Chang, T.T., Chou, W.W., 2004. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Botanical Bulletin of Academia Sinica 45, 347–352.
[22]Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. Journal of Ethnopharmacology 121 (2009) 194–212
[23]Chen, C.J., Su, C.H., Lan, M.H., 2001a. Study on solid cultivation and bioactivity of Antrodia camphorata. Fungal Sciences 16, 65–72.
[24]Chang, T.T., Wang, W.R., 2005. Basidiomatal formation of Antrodia cinnamomea on artificial agra media. Botanical Bulletin of Academia Sinica 46, 151–154.
[25]Wang, W.M., Wu, R.Y., Ko, W.H., 2005. Variation and segregation following nuclear transplantation in Antrodia cinnamomea. Botanical Bulletin of Academia Sinica 46, 217–222.
[26]Hsiao, G., Shen, M.Y., Lin, K.H., Lan, M.H., Wu, L.Y., Chou, D.S., Lin, C.H., Su, C.H., Sheu, J.R., 2003. Antioxidant and hepatoprotective effective of Antrodia camphorata extract. Journal of Agricultural and Food Chemistry 51, 3302–3308.
[27]Song, T.Y., Yen, G.C., 2003. Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. Journal of Agricultural and Food Chemistry 51, 1571–1577.
[28]Dai, Y.Y., Chuang, C.H., Tsai, C.C., Sio, H.M., Huang, S.C., Chen, J.C., Hu, M.L., 2003. The protection of Antrodia camphorata against acute hepatotoxicity of alcohol in rats. Journal of Food and Drug Analysis 11, 177–185.
[29]Lu, Z.M., Tao, W.Y., Zou, X.L., Fu, H.Z., Ao, Z.H., 2007b. Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats. Journal of Ethnopharmcology 110, 160–164.
[30]Han, H.F., Nakamura, N., Zuo, F., Hirakawa, A., Yokozawa, T., Hattori, M., 2006. Protec- tive effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chemical & Pharmaceutical Bulletin 54, 496–500.
[31]Lin, W.C., Kuo, S.C., Lin, W.L., Fang, H.L., Wang, B.C., 2006. Filtrate of fermented mycelia from Antrodia camphorata reduces liver fibrosis induced carbon tetra- chloride in rats. World Journal of Gastroenterology 12, 2369–2374.
[32]Huang, J.S., Chang, H.C., Li, E.I.C., Huang, T.M., Su, Y.H., Wang, K.C., 2006. Enhance- ment of hepatoprotective efficacy of Antrodia camphorata by Chinese tradition medicine. Journal of Gastroenterology and Hepatology 21 (Suppl. 2), A234.
[33]Lee, I.H., Huang, R.L., Chen, C.T., Chen, H.C., Hsu, W.C., Lu, M.K., 2002. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Micro- biology Letters 209, 63–67.
[34]Huang, R.L., Huang, Q., Chen, C.F., Chang, T.T., Chou, C.J., 2003. Anti-viral effects of active compounds from Antrodia camphorata on wild-type and lamivudine- resistant mutant HBV. The Chinese Pharmaceutical Journal 55, 371–379.
[35]Shen, C.C., Yang, H.C., Huang, R.L., Chen, J.C., Chen, C.C., 2005. Anti-HBV principle from the culture broth of Antrodia camphorata (strain # CCRC-35396). Journal of Chinese Medicine 16, 57–61.
[36]Huang, N.K., Cheng, J.J., Lai, W.L., Lu, M.K., 2005. Antrodia camphorata prevents rat pheochromo cells from serum deprivation-induced apoptosis. FEMS Microbiol- ogy Letters 244, 213–219.
[37]Lu, M.K., Cheng, J.J., Lai, W.L., Lin, Y.R., Huang, N.K., 2006. Adenosine as an active component of Antrodia cinnamomea that prevents rat PC12 cells from serum deprivation-induced apoptosis through the activation of adenosine A2A recep- tors. Life Sciences 79, 252–258.
[38]Lu, M.K., Cheng, J.J., Lai, W.L., Lin, Y.J., Huang, N.K., 2008. Fermented Antrodia cinnamomea extract protects rat PC12 cells from serum deprivation-induced apoptosis: the role of the MAPK family. Journal of Agricultural and Food Chemistry 56, 865–874.
[39]Wang, G.J., Tseng, H.W., Chou, C.J., Tsai, T.H., Chen, C.T., Lu, M.K., 2003. The vasorelaxation of Antrodia camphorata mycelia: involvement of endothelial Ca2+ - NO-cGMP pathway. Life Sciences 73, 2769–2783.
[40]Liu, D.Z., Liang, Y.C., Lin, S.Y., Lin, Y.S., Wu, W.C., Hou, W.C., Su, C.H., 2007b. Anti- hypertensive activities of a solid-state culture of Taiwanofungus camphoratus (Chang-Chih) in spontaneously hypertensive rats. Bioscience Biotechnology and Biochemistry 71, 23–30.
[41]Yen, S.J., 2006. Study on the hypotriglyceridemic effect of Antrodia camphorata in rats with high-cholesterol diet. Master Thesis. Taipei Medical University, Taiwan, China.
[42]Chiang, S.Y., Hsieh, C.L., Chang, L.L., Pei, S.Y., Lin, M.Y., Kao, S.T., 2004. The safety and anti-genotoxic effects of Antrodia camphorata In vitro, in pregnant mice and their fetuses. Toxicology and Applied Pharmacology 197, 350–351.
[43]Cheng, J.J., Huang, N.K., Chang, T.T., Wang, D.L., Lu, M.K., 2005a. Study for anti- angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells. Life Sciences 76, 3029–3042.
[44]Wu, C.Y., Liang, Z.C., 2005. Antimicrobial activity of extract from Antrodia camphor- ata cultured on pearl barley by solid-state fermentation. Taiwanese Journal of Agricultural Chemistry and Food Science 43, 295–303.
[45]Chen, P.C., 2007. The depigment effect on B16-F10 melanoma cell by herb fer- mentation products with Antrodia camphorata. Master Thesis. Southern Taiwan University of Technology, Taiwan, China.
[46]Shen, Y.C., Chen, C.F., Wang, Y.H., Chang, T.T., Chou, C.J., 2003b. Evaluation of the immuno-modulating activity of some active principles isolated from the fruit- ing bodies of Antrodia camphorata. The Chinese Pharmaceutical Journal 55, 313–318.
[47]Chen, J.C., 2008. King of Ganoderma: Antrodia camphorata in Taiwan, 2nd ed. YuenChiJai Book Publishing Co., Taipei, Taiwan.
[48]Cheng, C.F., Lai, Z.C., Lee, Y.J., 2008a. Total synthesis of (±)-camphorataimides and (±)-himanimides by NaBH4/Ni(OAc)2 or Zn/AcOH stereoselective reduction. Tetrahedron 64, 4347–4354.
[49]Cheng, P.C., Hsu, C.Y., Chen, C.C., Lee, K.M., 2008b. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni. Toxicology and Applied Pharmacology 227, 291–298.
[50]Hsu, Y.L., Kuo, Y.C., Kuo, P.L., Ng, L.T., Kuo, Y.H., Lin, C.C., 2005. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Letters 221, 77–89.
[51]Song, T.Y., Hsu, S.L., Yeh, C.T., Yen, G.C., 2005a. Mycelia from Antrodia camphorata in submerged culture induced apoptosis of human heptoma HepG2 cells possibility through regulation of Fas pathway. Journal of Agricultural and Food Chemistry 53, 5559–5564.
[52]Song, T.Y., Hsu, S.L., Yen, G.C., 2005b. Induction of apoptosis in human heptoma cells by mycelium of Antrodia camphorata in submerged culture. Journal of Ethnopharmacology 100, 158–167.
[53]Kuo, P.L., Hsu, Y.L., Cho, C.Y., Ng, L.T., Kuo, Y.H., Lin, C.C., 2006. Apoptotic effects of Antrodia cinnamomea fruiting bodies extract are mediated through calcium and calpain-dependent pathways in Hep 3B cells. Food and Chemical Toxicology 44, 1316–1326.
[54]Hsu, Y.L., Kuo, P.L., Cho, C.Y., Ni, W.C., Tzeng, T.F., Ng, L.T., Kuo, Y.H., Lin, C.C., 2007. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor κB pathway. Food and Chemical Toxicology 45, 1249–1257.
[55]Chang, C.Y., Huang, Z.N., Yu, H.H., Chang, L.H., Li, S.L., Chen, Y.P., Lee, K.Y., Chuu,J.J., 2008. The adjuvant effects of Antrodia Camphorata extracts combined with anti-tumor agents on multidrug resistant human hepatoma cells. Journal of Ethnopharmacology 118, 387–395.
[56]Yang, H.L., Chen, C.S., Chang, W.H., Lu, F.J., Lai, Y.C., Chen, C.C., Hseu, T.H., Kuo, C.T., Hseu, Y.C., 2006a. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Letters 231, 215–227.
[57]Hseu, Y.C., Chen, S.C., Tsai, P.C., Chen, C.S., Lu, F.J., Chang, N.W., Yang, H.L., 2007. Inhibition of cyclooxygenase-2 and induction of apoptosis in estrogen-nonresponsive breast cancer cells by Antrodia camphorata. Food and Chemical Toxicology 45, 1107–1115.
[58]Hseu, Y.C., Chen, S.C., Chen, H.C., Liao, J.W., Yang, H.L., 2008a. Antrodia camphorata inhibits proliferation of human breast cancer cells In vitro and In vivo. Food and Chemical Toxicology 46, 2680–2688.
[59]Peng, C.C., Chen, K.C., Peng, R.Y., Su, C.H., Hsieh-Li, H.M., 2006. Human urinary blad- der cancer T24 cells are susceptible to the Antrodia camphorata extracts. Cancer Letters 243, 109–119.
[60]Peng, C.C., Chen, K.C., Peng, R.Y., Chyau, C.C., Su, C.H., Hsieh-Li, H.M., 2007. Antro- dia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells. Journal of Ethnopharmacology 109, 93–103.
[61]Hseu, Y.C., Yang, H.L., Lai, Y.C., Lin, J.G., Chen, G.W., Chang, Y.H., 2004. Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutrition and Cancer-an International Journal 48, 189–197.
[62]Liu, J.J., Huang, T.S., Hsu, M.L., Chen, C.C., Lin, W.S., Lu, F.J., Chang, W.H., 2004. Antitu- mor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicology and Applied Pharmacology 201, 186–193.
[63]Lu, Y.C., Huang, C.C., Huang, C.J., Chu, S.T., Chi, C.C., Su, H.H., Hsu, S.S., Wang, J.L., Chen, I.S., Liu, S.I., Huang, J.K., Ho, C.M., Kuo, S.J., Jan, C.R., 2007a. Effects of Antrodia camphorata on viability, apoptosis, [Ca2+ ]i , and MAPKs phosphorylation in MG63 human osteosarcoma cells. Drug Development Research 68, 71–78.
[64]Chen, K.C., Peng, C.C., Peng, R.Y., Su, C.H., Chiang, H.S., Yan, J.H., Hsieh-Li, H.M., 2007c. Unique formosan mushroom Antrodia camphorata differentially inhibits androgen-responsive LNCaP and -independent PC-3 prostate cancer cells. Nutri- tion and Cancer—An International Journal 57, 111–121.
[65]Wu, H., Pan, C.L., Yao, Y.C., Chang, S.S., Li, S.L., Wu, T.F., 2006. Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell. Proteomics 6, 826–835.
[66]Shen, Y.C., Chou, C.J., Wang, Y.H., Chen, C.F., Chou, Y.C., Lu, M.K., 2004a. Anti- inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiology Letters 231, 137–143.
[67]Shen, Y.C., Wang, Y.H., Chou, Y.C., Chen, C.F., Lin, L.C., Chang, T.T., Tien, J.H., Chou, C.J., 2004b. Evaluation of the anti-inflammatory activity of zhankuic acids iso- lated from the fruiting bodies of Antrodia camphorata. Planta Medica 70, 310– 314.
[68]Hseu, Y.C., Wu, F.Y., Wu, J.J., Chen, J.Y., Chang, W.H., Lu, F.J., Lai, Y.C., Yang, H.L., 2005. Anti-inflammatory potential of Antrodia camphorata through inhibition of NOS, COX-2 and cytokines via the NF-kappa B pathway. International Immunopharmacology 5, 1914–1925.
[69]Cheng, J.J., Yang, C.J., Cheng, C.H., Wang, Y.T., Huang, N.K., Lu, M.K., 2005b. Character- ization and functional study of Antrodia camphorata lipopolysaccharide. Journal of Agricultural and Food Chemistry 53, 469–474.
[70]Chen, C.C., Liu, Y.W., Ker, Y.B., Wu, Y.Y., Lai, E.Y., Chyau, C.C., Hseu, T.H., Peng, R.Y., 2007a. Chemical characterization and anti-inflammatory effect of polysac- charides fractionated from submerge-cultured Antrodia camphorata mycelia. Journal of Agricultural and Food Chemistry 55, 5007–5012.
[71]Liu, D.Z., Liang, H.J., Chen, C.H., Su, C.H., Lee, Z.H., Huang, C.T., Hou, W.C., Lin, S.Y., Zhong, W.B., Lin, P.J., Hung, L.F., Liang, Y.C., 2007a. Comparative anti- inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and the mech- anism of its action. Journal of Ethnopharmacology 113, 45–53.
[72]Rao, Y.K., Fang, S.H., Tzeng, Y.M., 2007. Evaluation of the anti-inflammatory and anti- proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. Journal of Ethnopharmacology 114, 78–85.
[73]Chen, J.J., Lin, W.J., Liao, C.H., Shieh, P.C., 2007b. Anti-inflammatory benzenoids from Antrodia camphorata. Journal of Natural Products 70, 989–992.
[74]Wu, Y.Y., Chen, C.C., Chyau, C.C., Chung, S.Y., Liu, Y.W., 2007c. Modulation of inflammation-related genes of polysaccharides fractionated from mycelia of medicinal basidiomycete Antrodia camphorata. Acta Pharmacologica Sinica 28, 258–267.
[75]Huang, L.C., Huang, S.J., Chen, C.C., Mau, J.L., 1999. Antioxidant properties of Antrodia camphorata. In: Proceedings of the 3rd International Conference on Mushroom Biology and Mushroom Products, Sydney, Australia, pp. 275–283.
[76]Song, T.Y., Yen, G.C., 2002. Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry 50, 3322– 3327.
[77]Hseu, Y.C., Chang, W.C., Hseu, Y.T., Lee, C.Y., Yech, Y.J., Chen, P.C., Chen, J.Y., Yang, H.L., 2002. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sciences 71, 469–482.
[78]Mau, J.L., Huang, P.N., Huang, S.J., Chen, C.C., 2003. Time course for antioxidants production by Antrodia camphorata in submerged culture. Fungal Sciences 18, 59–71.
[79]Mau, J.L., Huang, P.N., Huang, S.J., Chen, C.C., 2004. Antioxidant properties of methanol extracts from two kinds of Antrodia camphorata mycelia. Food Chem- istry 86, 25–31.
[80]Yang, H.L., Hseu, Y.C., Chen, J.Y., Yech, Y.J., Lu, F.J., Wang, H.H., Lint, P.S., Wang, B.C., 2006b. Antrodia camphorata in submerged culture protects low density lipopro- teins against oxidative modification. American Journal of Chinese Medicine 34, 217–231.
[81]Huang, S.J., Mau, J.L., 2007. Antioxidant properties of methanolic extracts from Antro- dia camphorata with various doses of gamma-irradiation. Food Chemistry 105, 1702–1710.
[82]Hseu, Y.C., Chen, S.C., Yech, Y.J., Wang, L., Yang, H.L., 2008b. Antioxidant activity of Antrodia camphorata on free radical-induced endothelial cell damage. Journal of Ethnopharmacology 118, 237–245.
[83]Chiu, H.H., 2007. Phylogenetic analysis of Antrodia species and Antrodia camphorata inferred from internal transcribed spacer region. Antonie van Leeuwenhoek 91, 267–276.
[84]洪心容、黃世勳編著 (2007)。實用藥草入門圖鑑。臺中市:展讀文化
[85]Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol 2009; 121: 194–212.
[86]Geethangili M, Tzeng YM. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complement Alternat Med 2011; 2011; 212641. doi:10.1093/ecam/nep108
[87]Cherng IH, Wu DP, Chiang HC. Triterpenoids from Antrodia cinnamomea. Phytochemistry 1996; 41: 263–67.
[88]Chen C.-H., Yang S.-W., and Shen Y.-C., “New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum,” Journal of Natural Products, vol. 58, no. 11, pp. 1655–1661, 1995.
[89]Chen J.-J., Lin W.-J., Liao C.-H., and Shieh P.-C., “Anti-inflammatory benzenoids from Antrodia camphorata,” Journal of Natural Products, vol. 70, no. 6, pp. 989–992, 2007.
[90]K. B. Male, Y. K. Rao, Y.-M. Tzeng, J. Montes, A. Kamen, and J. H. T. Luong, “Probing inhibitory effects of Antrodia camphorata isolates using insect cell-based impedance spectroscopy: inhibition vs chemical structure,” Chemical Research in Toxicology, vol. 21, no. 11, pp. 2127–2133, 2008.
[91]Yeh C. T., Rao Y. K., C. F. et al., “Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells,” Cancer Letters, vol. 285, no. 1, pp. 73–79, 2009.
[92]Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN: Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. The EMBO journal 2002, 21(18):4831-4840.
[93]Carol A. Feghali PD, and Timothy M. Wright, M.D1: Cytokine in acute and chronic inflammation. Frontiers in Bioscience 2 January 1, 1997.
[94]E FH, Pstein MD: Cytokine pathway and joint inflammation in rheumatoid arthritis. Mechanisms of Disease.
[95]Spector WG, Willoughby DA: The inflammatory response. Bacteriological reviews 1963, 27:117-154.
[96]Guzel S, Serin O, Guzel EC, Buyuk B, Yilmaz G, Guvenen G: Interleukin-33, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinase-1 in myocardial infarction. The Korean journal of internal medicine 2013, 28(2):165-173.
[97]Narasimhalu K, Lee J, Leong YL, Ma L, De Silva DA, Wong MC, Chang HM, Chen C: Inflammatory markers and their association with post stroke cognitive decline. International journal of stroke :official journal of the International Stroke Society 2013.
[98]Stogsdill MP, Stogsdill JA, Bodine BG, Fredrickson AC, Sefcik TL, Wood TT, Kasteler SD, Reynolds PR: Conditional RAGE Overexpression in the Adult Murine Lung Causes Airspace Enlargement and Induces Inflammation. American journal of respiratory cell and molecular biology 2013.
[99]Asquith DL, Ballantine LE, Nijjar JS, Makdasy MK, Patel S, Wright PB, Reilly JH, Kerr S, Kurowska-Stolarska M, Gracie JA et al: The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release. Annals of the rheumatic diseases 2013.
[100]Goodwin JS, Ceuppens JL, Rodriguez MA: Administration of nonsteroidal anti-inflammatory agents in patients with rheumatoid arthritis. Effects on indexes of cellular immune status and serum rheumatoid factor levels. JAMA : the journal of the American Medical Association 1983, 250(18):2485-2488.
[101]Ohshima H, Bartsch H: Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutation research 1994, 305(2):253-264.
[102]Sautebin L: Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia 2000, 71 Suppl 1:S48-57.
[103]Nussler AK, Billiar TR: Inflammation, immunoregulation, and inducible nitric oxide synthase. Journal of leukocyte biology 1993, 54(2):171-178.
[104]Raschke WC, Baird S, Ralph P, Nakoinz I: Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 1978, 15(1):261-267.
[105]Hartley JW, Evans LH, Green KY, Naghashfar Z, Macias AR, Zerfas PM, Ward JM: Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology 2008, 5:1.
[106]Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang JI, Rebres R, Roach T, Seaman W, Simon MI et al: A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(37):13759-13764.
[107]Yang D-J, Lin J-T, Chen Y-C, Liu S-C, Lu F-J, Chang T-J, Wang M, Lin H-W, Chang Y-Y. Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-κB and JNK inactivation. Journal of Functional Foods. 2013;5(2):607-615.
[108]Dyer KD, Schellens IM, Bonville CA, Martin BV, Domachowske JB, Rosenberg HF: Efficient replication of pneumonia virus of mice (PVM) in a mouse macrophage cell line. Virology journal 2007, 4:48.
[109]Denlinger LC, Fisette PL, Garis KA, Kwon G, Vazquez-Torres A, Simon AD, Nguyen B, Proctor RA, Bertics PJ, Corbett JA: Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. The Journal of biological chemistry 1996, 271(1):337-342.
[110]Lin HW, Chang TJ, Yang DJ, Chen YC, Wang M, Chang YY. Regulation of virus-induced inflammatory response by beta-carotene in RAW264.7 cells. Food Chem. 2012;134(4):2169-2175.
[111]Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology.Am JRespir Cell Mol Biol. 2002;26(1):152-9.
[112]Heflin AC, Brigham KL. Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia. J Clin Invest 1981;68(5):253–1260.
[113]Esbenshade AM, Newman JH, Lams PM, Jolles H, Brigham KL. Respiratory failure after endotoxin infusion in sheep: lung mechanics and lung fluid balance. J Appl Physiol 1982;53(4):967-76.
[114]Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell. 61(2), 361-370.
[115]Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science. 248(4958), 1019-1023.
[116]Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell. 61(2):351-359.
[117]Zhang F, Yu W, Hargrove JL, Greenspan P, Dean RG, Taylor EW, Hartle DK (2002) Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis. 161(2), 381-386.
[118]Aggarwal BB (2000) Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann Rheum Dis. 59 Suppl 1, i6-16.
[119]Nawroth PP, Bank I, Handley D, Cassimeris J, Chess L, Stern D (1986) Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med. 163(6), 1363-1375.
[120]Jirik FR, Podor TJ, Hirano T, Kishimoto T, Loskutoff DJ, Carson DA, Lotz M (1989) Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J Immunol. 142(1), 144-147.
[121]Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B (1989) Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 243(4895), 1160-1165.
[122]Pober JS, Lapierre LA, Stolpen AH, Brock TA, Springer TA, Fiers W, Bevilacqua MP, Mendrick DL, Gimbrone MA Jr. (1987) Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin 1 species. J Immunol. 138(10), 3319-3324.
[123]Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 59(6), 1203-1211.
[124]Rice GE, Bevilacqua MP (1989) An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science. 246(4935), 1303-6.
[125]Carlos TM, Schwartz BR, Kovach NL, Yee E, Rosa M, Osborn L, Chi-Rosso G, Newman B, Lobb R (1990) Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood. 76(5), 965-970.
[126]Marlin SD, Springer TA (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell. 51(5), 813-9.
[127]Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, HemLer ME, Lobb RR (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell. 60(4), 577-584.
[128]Springer TA (1998) Adhesion receptors of the immune system. Nature. 346(6283), 425-434.
[129]Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B (1990) Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science. 250(4984), 1132-1135.
[130]鄧富元、龔素芳、夏毅然、高文斌、謝耀東 NF-κB在發炎反應、細胞凋亡與癌症生成過程中的調控。Chin Dent J (中華牙誌) 25(1):12-24 March 2006
[131]Dyer KD, Schellens IM, Bonville CA, Martin BV, Domachowske JB, Rosenberg HF: Efficient replication of pneumonia virus of mice (PVM) in a mouse macrophage cell line. Virology journal 2007, 4:48.
[132]Michael JM, Sankar G. Rel/NF-κB and IκB proteins: an overview [review]. Seminars in Cancer Biology, 8: 63-73, 1997.
[133]Michael JM, Sankar G. Signal transducion through NF-κB [review]. Immun Today, 19(2): 80-88, 1998.
[134]Karin M, Yamamoto Y, Wang QM: The IKK NF-kappa B system: a treasure trove for drug development. Nature reviews Drug discovery 2004, 3(1):17-26.
[135]Gasparini C, Feldmann M: NF-kappaB as a target for modulating inflammatory responses. Current pharmaceutical design 2012, 18(35):5735-5745.
[136]Haskill S, Beg AA, Tompkins SM, Morris JS, Yurochko AD, Sampson-Johannes A, Mondal K, Ralph P, Baldwin AS, Jr.: Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell 1991, 65(7):1281-1289.
[137]Zabel U, Baeuerle PA: Purified human I kappa B can rapidly dissociate the complex of the NF-kappa B transcription factor with its cognate DNA. Cell 1990, 61(2):255-265.
[138]Huang Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX: NF-kappaB precursor, p105, and NF-kappaB inhibitor, IkappaBgamma, are both elevated in Alzheimer disease brain. Neuroscience letters 2005, 373(2):115-118.
[139]Shih VF, Kearns JD, Basak S, Savinova OV, Ghosh G, Hoffmann A: Kinetic control of negative feedback regulators of NF-kappaB/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proceedings of the National Academy of Sciences of the United States of America 2009, 106(24):9619-9624.
[140]Lopez-Bojorquez LN, Arechavaleta-Velasco F, Vadillo-Ortega F, Montes-Sanchez D, Ventura-Gallegos JL, Zentella-Dehesa A: NF-kappaB translocation and endothelial cell activation is potentiated by macrophage-released signals co-secreted with TNF-alpha and IL-1beta. Inflammation research : official journal of the European Histamine Research Society [et al] 2004, 53(10):567-575.
[141]Gao C, Wang X, Chen L, Wang JH, Gao ZT, Wang H: Knockdown of Bcl-3 Inhibits Cell Growth and Induces DNA Damage in HTLV-1-infected Cells). Asian Pacific journal of cancer prevention : APJCP 2013, 14(1):405-408.
[142]Ben-Neriah Y, Karin M: Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature immunology 2011, 12(8):715-723.
[143]Basith S, Manavalan B, Gosu V, Choi S: Evolutionary, structural and functional interplay of the IkappaB family members. PloS one 2013, 8(1):e54178.
[144]Liu H, Yu S, Xu W, Xu J: Enhancement of 26S proteasome functionality connects oxidative stress and vascular endothelial inflammatory response in diabetes mellitus. Arteriosclerosis, thrombosis, and vascular biology 2012, 32(9):2131-2140.
[145]Aupperle KR, Bennett BL, Boyle DL, Tak PP, Manning AM, Firestein GS: NF-kappa B regulation by I kappa B kinase in primary fibroblast-like synoviocytes. Journal of immunology (Baltimore, Md : 1950) 1999, 163(1):427-433.
[146]Chapter6 Cell Signaling and Apoptosis. Figure 6-F-2. Molecular Biology Web Book. http://www.web-books.com/MoBio/Free/Ch6F2.htm.
[147]Ebrahim Z, Michael K. Bridging the Gap: Composition, Regulation, and Physiological Function of the IκB Kinase Complex. Mol Cell Biol, 19: 4547-4551, 1999.
[148]Charles KK, Elaine F. It''s Got You Covered: NF-κB in the Epidermis. J Cell Biol, 149: 999-1004, 2000
[149]Jorge M, Meco M, Paul R. NF-κB activation by protein kinase C isoforms and B-cell function. EMBO Reports, 4:31-36, 2003.
[150]Chen F, Castranova V, Shi XL. New Insights into the Role of Nuclear Factor-κB in Cell Growth Regulation. Am J Pathol, 159:387-397, 2001.
[151]Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev, 15:2321-2342, 2001.
[152]Fu H, Sadis S, Rubin DM, Glickman M, van Nocker, S, Finley D, Vierstra RD. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26S proteasome subunit. MCBI J Biol Chem, 273: 1970-1981, 1998.
[153]Yang D-J, Lin J-T, Chen Y-C, Liu S-C, Lu F-J, Chang T-J, Wang M, Lin H-W, Chang Y-Y. Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-κB and JNK inactivation. Journal of Functional Foods. 2013;5(2):607-615.
[154]楊念忠 平滑肌細胞中第一型血紅素氧化調控介白素一號所誘發一氧化氮合成之研究,2000
[155]Michel, T., and Feron, O. (1997). Perspective series: Nitric oxide and nitric oxide synthases. J. Clin. Invest. 100, 2146-2152.
[156]Nathan, C., and Xie, Q.-W. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918.
[157]Kunz, D., Műhl, H., Walker, G., and Pfeilschifter, J. (1994). Two distinct signaling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells. Proc. Natl. Acad. Sci. USA 91, 5387-5391.
[158]Perrella, J. A., Yoshizumi, M.,Fen Z., Tsai, J.-C., Hsieh, C.-M., Kourembanas, S., and Lee, M.-E. (1994). Transforming growth factor-β1, but not dexamethasone, down-regulates nitric-oxide synthase mRNA after its induction by interleukin-1β in rat smooth muscle cells. J. Biol. Chem. 269, 14595-14600
[159]Lecanu, L., and Plotkine, M. (1999). Contribution of oxidative stress to excitotoxicity-induced deleterious iNOS in the CNS. Drug Discovery Today 4, 292-293.
[160]Olajide OA, Aderogba MA, Fiebich BL. Mechanisms of anti- inflammatory property of Anacardium occidentale stem bark: inhibition of NF-kappaB and MAPK signalling in the microglia. J Ethnopharmacol. 2013;145(1):42-49.
[161]Lee HS, Ryu DS, Lee GS, Lee DS. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: suppression of NF-kappaB activation and MAPK signaling. J Ethnopharmacol. 2012;140(2):271-276.
[162]Jin M, Suh SJ, Yang JH, Lu Y, Kim SJ, Kwon S, Jo TH, Kim JW, Park YI, Ahn GW, Lee CK, Kim CH, Son JK, Son KH, Chang HW. Anti- inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF- kappaB and ERK1/2 inactivation. Food Chem Toxicol. 2010;48(11):3073-3079.
[163]Ulrich CM, Bigler J and Potter JD (2006) Nat Rev Cancer 6: 130-140.
[164]Wada T, Penninger JM: Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004, 23(16):2838-2849.
[165]Tormos AM, Arduini A, Talens-Visconti R, Del Barco Barrantes I, Nebreda AR, Sastre J: Liver-specific p38alpha deficiency causes reduced cell growth and cytokinesis failure during chronic biliary cirrhosis in mice. Hepatology (Baltimore, Md) 2012.
[166]Huang R, Lian JP, Robinson D, Badwey JA: Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks): separate signals are required for activation and inactivation of paks. Molecular and cellular biology 1998, 18(12):7130-7138.
[167]Barone FC, Feuerstein GZ: Inflammatory mediators and stroke: new opportunities for novel therapeutics. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 1999, 19(8):819-834.
[168]Butcher GQ, Lee B, Cheng HY, Obrietan K: Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP-ERK/MAP kinase-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience 2005, 25(22):5305-5313.
[169]Osmond RI, Sheehan A, Borowicz R, Barnett E, Harvey G, Turner C, Brown A, Crouch MF, Dyer AR: GPCR screening via ERK 1/2: a novel platform for screening G protein-coupled receptors. Journal of biomolecular screening 2005, 10(7):730-737.
[170]Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM, George EL, Neel BG: An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Developmental cell 2006, 10(3):317-327.
[171]Matsuda S, Gotoh Y, Nishida E: Phosphorylation of Xenopus mitogen-activated protein (MAP) kinase kinase by MAP kinase kinase kinase and MAP kinase. The Journal of biological chemistry 1993, 268(5):3277-3281.
[172]Grewal SS, York RD, Stork PJ: Extracellular-signal-regulated kinase signalling in neurons. Current opinion in neurobiology 1999, 9(5):544-553.
[173]Chuderland D, Seger R: Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Molecular biotechnology 2005, 29(1):57-74.
[174]York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW, Stork PJ: Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 1998, 392(6676):622-626.
[175]Chen W, Martindale JL, Holbrook NJ, Liu Y: Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Molecular and cellular biology 1998, 18(9):5178-5188.
[176]Jin F, Irshad S, Yu W, Belakavadi M, Chekmareva M, Ittmann MM, Abate-Shen C, Fondell JD: ERK and AKT signaling pathways promote MED1 overexpression in prostate cancer cells in association with elevated proliferation and tumorigenicity. Molecular cancer research : MCR 2013.
[177]Shen K, Ji L, Lu B, Wang Z: c-Jun N-terminal kinase mediated VEGFR2 sustained phosphorylation is critical for VEGFA-induced angiogenesis In vitro and In vivo. Cell biochemistry and biophysics 2012, 64(1):17-27.
[178]Owen GR, Achilonu I, Dirr HW: High yield purification of JNK1beta1 and activation by In vitro reconstitution of the MEKK1-->MKK4-->JNK MAPK phosphorylation cascade. Protein expression and purification 2013, 87(2):87-99.
[179]Wang J, Xia Y: Assessing developmental roles of MKK4 and MKK7 In vitro. Communicative & integrative biology 2012, 5(4):319-324.
[180]Luo J, Xu Y, Zhang M, Gao L, Fang C, Zhou C: Magnolol Inhibits LPS-Induced Inflammatory Response in Uterine Epithelial Cells : Magnolol Inhibits LPS-Induced Inflammatory Response. Inflammation 2013.
[181]Yang Q, Kim YS, Lin Y, Lewis J, Neckers L, Liu ZG: Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK. EMBO reports 2006, 7(6):622-627.
[182]Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M: Modulation of the JNK pathway in liver affects insulin resistance status. The Journal of biological chemistry 2004, 279(44):45803-45809.
[183]Herlaar E, Brown Z: p38 MAPK signalling cascades in inflammatory disease. Molecular medicine today 1999, 5(10):439-447.
[184]Woodgett JR, Avruch J, Kyriakis J: The stress activated protein kinase pathway. Cancer surveys 1996, 27:127-138.
[185]Hochdorfer T, Tiedje C, Stumpo DJ, Blackshear PJ, Gaestel M, Huber M: LPS-induced production of TNF-alpha and IL-6 in mast cells is dependent on p38 but independent of TTP. Cellular signalling 2013.
[186]Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC: SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS letters 1995, 364(2):229-233.
[187]Grethe S, Porn-Ares MI: p38 MAPK regulates phosphorylation of Bad via PP2A-dependent suppression of the MEK1/2-ERK1/2 survival pathway in TNF-alpha induced endothelial apoptosis. Cellular signalling 2006, 18(4):531-540.
[188]Sanchez A, Tripathy D, Yin X, Desobry K, Martinez J, Riley J, Gay D, Luo J, Grammas P: p38 MAPK: a mediator of hypoxia-induced cerebrovascular inflammation. Journal of Alzheimer''s disease : JAD 2012, 32(3):587-597.
[189]Tenhunen, R., Marver, H. S., and Schmid, R. (1968). The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 61, 748-755.
[190]Magnusson, S., Ekström, J., Elmér, E., Kanje, M., Ny, L., Alm, P. (1999). Heme oxygenase-1, heme oxygenase-2 and biliverdin reductase in peripheral ganglia from rat, expression and plasticity. Neuroscience. 95, 821-829.
[191]McCoubrey, W. K., Jr., Huang T. J. and Maines M.D. (1997). Isolation and characterization of cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725-732.
[192]Maines, M. D. (1997). The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 5517-554.
[193]Liu Y, Zhang Z, Luo B, Schluesener HJ, Zhang Z: Lesional accumulation of heme oxygenase-1+ microglia/macrophages in rat traumatic brain injury. Neuroreport 2013, 24(6):281-286.
[194]Farombi EO, Surh YJ: Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. Journal of biochemistry and molecular biology 2006, 39(5):479-491.
[195]Abraham NG, Asija A, Drummond G, Peterson S: Heme oxygenase -1 gene therapy: recent advances and therapeutic applications. Current gene therapy 2007, 7(2):89-108.
[196]Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N. and Ames, B. N. (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-1046.
[197]Neuzil, J., and Stocker, R. (1994). Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J. Biol. Chem. 269, 16712-16719.
[198]Coceani, F. (1993). Carbon monoxide and dialation of blood vessels. Science 260, 739.
[199]Leffler, C. W., Nasjletti, A., Yu, C., Johnson, A., Fedinec, A. L., and Walker, N. (1999). Carbon monoxide and cerebral microvascular tone in newborn pigs. Am. J. Physiol. 276, H1641-H1646.
[200]Snyder, S. H., Jaffrey, S. R. and zakhary R. (1998). Nitric oxide and carbon monoxide: parallel roles as neural messagers. Brain Res. Rev. 26, 167-175.
[201]Choi, A. M. and Alam, J. (1996). Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am. J. Respir. Cell Mol. Biol. 15, 9-19.
[202]Balla, G., Jacob, H. S., Balla, J. Rosenbreg, M., Nath, K., Apple, F., Eaton, J. W., and Vercellotti, G. M. (1992). Ferritin: a cytoprotective antioxidant strategem of endothelium J. Biol. Chem. 267 18148-18153.
[203]Dennery, P. A., Wong, H. E., Sridhar, K. J., Rodgers, P. A., Sim, J. E. and Spitz, D. R. (1996). Differences in basal and hyperoxia-associated HO expression in oxidant-resistant hamster fibroblasts. Am. J. Physiol. 271, L672-679.
[204]Primiano, T., Kensler, T. W., Kuppusamy, P., Zweier, J. L. and Sutter, T. R. (1996). Induction of hepatic heme oxygenase-1 and ferritin in rats by cancer chemopreventive dithiolethiones. Carcinogenesis 17, 2291-6
[205]Abraham, N. G., Lavrovsky, Y., Schwartzman, M. L., Stoltz, R. A., Levere, R. D., Gerritsen, M. E., Shibahara, S., and Kappas, A. (1995). Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc. Natl. Acad. Sci. USA 92, 6798-6802.
[206]Yang, L., Quan, S. and Abraham, N. G. (1999). Retrovirusmediated HO gene transfer into endothelial cells protects against oxidant-induced injury. Am. J. Physiol. 277, L127-133.
[207]Lee, P. J., Alam, G., Wiegand, G. W. and Choi, A. M. (1996). Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc. Natl. Acad. Sci. USA 93, 10393-10398.
[208]Suttner, D. M., Sridhar, K., Lee, C. S., Tomura, T., Hansen, T. N. and Dennery, P. A. (1999). Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am. J. Physiol. 276, L443-451.
[209]Yachie, A., Niida, Y., Wada. T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y. and Koizumi, S. (1999). Oxidative stress cause enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103, 129-135.
[210]Bach FH: Heme oxygenase-1 as a protective gene. Wiener klinische Wochenschrift 2002, 114 Suppl 4:1-3.
[211]Abraham NG, Kappas A: Heme oxygenase and the cardiovascular-renal system. Free radical biology & medicine 2005, 39(1):1-25.
[212]黃健裕、李毓芹、陽光耀 急性呼吸窘迫症候群診斷定義的新變革—從AECC到柏林定義。內科學誌 2013:24:79-84[213]Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685-1693
[214]Tsushima K, King LS, Aggarwal NR, De Gorordo A, D''Alessio FR, Kubo K. Acute lung injury review. Intern Med. 2009;48:621-630
[215]Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334-1349
[216]Dreyfuss D, Ricard JD. Acute lung injury and bacterial infection. Clin Chest Med. 2005;26:105-112
[217]Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17:293-307
[218]Balamayooran G, Batra S, Fessler MB, Happel KI, Jeyaseelan S. Mechanisms of neutrophil accumulation in the lungs against bacteria. Am J Respir Cell Mol Biol. 2010;43:5-16
[219]Abraham E. Neutrophils and acute lung injury. Crit Care Med. 2003;31:S195
[220]Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1137-1145
[221]Sapru A, Wiemels JL, Witte JS, Ware LB, Matthay MA. Acute lung injury and the coagulation pathway: Potential role of gene polymorphisms in the protein c and fibrinolytic pathways. Intensive Care Med. 2006;32:1293-1303
[222]Lee WL, Downey GP. Neutrophil activation and acute lung injury. Curr Opin Crit Care. 2001;7:1-7
[223]Meduri GU, Belenchia JM, Estes RJ, Wunderink RG, el Torky M, Leeper KV, Jr. Fibroproliferative phase of ards. Clinical findings and effects of corticosteroids. Chest.1991;100:943-952
[224]Gunther A, Mosavi P, Heinemann S, Ruppert C, Muth H, Markart P, Grimminger F, Walmrath D, Temmesfeld-Wollbruck B, Seeger W. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161:454-462
[225]Fukuda Y, Ishizaki M, Masuda Y, Kimura G, Kawanami O, Masugi Y. The role of intraalveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage. Am J Pathol. 1987;126:171-182
[226]Martin C, Papazian L, Payan MJ, Saux P, Gouin F. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients. Chest. 1995;107:196-200
[227]Bellingan GJ. The pulmonary physician in critical care * 6: The pathogenesis of ali/ards. Thorax. 2002;57:540-546
[228]Schultz MJ, Haitsma JJ, Zhang H, Slutsky AS. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia--a review. Crit Care Med. 2006;34:871-877
[229]Bastarache JA, Ware LB, Bernard GR. The role of the coagulation cascade in the continuum of sepsis and acute lung injury and acute respiratory distress syndrome. Semin Respir Crit Care Med. 2006;27:365-376
[230]Sebag SC, Bastarache JA, Ware LB. Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome. Curr Pharm Biotechnol. 2011;12:1481-1496
[231]Hofstra JJ, Haitsma JJ, Juffermans NP, Levi M, Schultz MJ. The role of bronchoalveolar hemostasis in the pathogenesis of acute lung injury. Semin Thromb Hemost. 2008;34:475-484
[232]Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2: 319-23.
[233]Petty TL, Ashbaugh DG. The adult respiratory distress syndrome. Clinical features, factors influencing prognosis and principles of management. Chest 1971; 60: 233-9.
[234]Chen H, Bai C, Wang X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev Respir Med. 2010;4:773-783
[235]Bastarache JA, Blackwell TS. Development of animal models for the acute respiratory distress syndrome. Dis Model Mech. 2009;2:218-223
[236]Wang HM, Bodenstein M, Markstaller K. Overview of the pathology of three widely used animal models of acute lung injury. Eur Surg Res. 2008;40:305-316
[237]Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295:L379-399
[238]Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-33.
[239]Peter P. The immune system. Garland Publishing, London, pp.201-219, 2000.
[240]Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease. Annu. Rev. Cell. Biol. 9: 317-343, 1993
[241]Zhang YS,Wang MH, Tao K, Chen FZ, Zhao GH, Department of Surgery,Wannan Medical College,Wuhu 241001,Anhui,China;Effect of propofol on pulmonary injury induced by early-stage severe acute pancreatitis in rats[J];Chinese Journal of Clinical Pharmacology and Therapeutics;2009-11
[242]Hyers TM, Tricomi SM, Dettenmeier PA, Fowler AA. Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1991;144 (2) :268–71.
[243]Millar AB, Singer M, Meager A, Foley NM, Johnson NM, Rook GAW. Tumor necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet. 1989; 2 (8665) :712–4.
[244]Gerard C, Frossard JL, Bhatia M, Saluja A, Gerard NP, Lu B, Steer M. Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. J Clin Invest. 1997;100 (8) :2022–7.
[245]Suter PM, Suter S, Girardin E, Roux-Lombard P, Grau GE, Dayer JM. High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interkeukin-1, interferon, and elastase, in patients with respiratory distress syndrome after trauma, shock, or sepsis. Am Rev Respir Dis. 1992;145 (5) :1016–22.
[246]Siler TM, Swierkosz JE, Hyers TM, Fowler AA, Webster RO. Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome. Exp Lung Res. 1989;15 (6) :881–94
[247]Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD, Martin TR. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1996;154 (3-1) :602–11.
[248]Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella F 2nd, Park DR, Pugin J, Skerrett SJ, Hudson LD, Martin TR. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164 (10-1) :1896–903.
[249]Delhase M, Li N, Karin M. Kinase regulation in inflammatory response. Nature. 2000;406 (6794) :367–8.
[250]Meja KK, Seldon PM, Nasuhara Y, Ito K, Barnes PJ, Lindsay MA. p38 MAP kinase and MKK-1 co-operate in the generation of GM-CSF from LPS-stimulated human monocytes by an NF-kappaB-independent mechanism. Br J Pharmacol. 2000;131 (6) :1143–53.
[251]Nasuhara Y, Adcock IM, Catley M, Barnes PJ, Newton R. Differential IKK activation and IkBα degradation by interleukin-1β and tumor necrosis factor-α in human U937 monocytic cells: evidence for additional regulatory steps in kB-dependent transcription. J Biol Chem. 1999;274 (28) :19965-72.
[252]De Bosscher K, Haegeman G, Elewaut D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol 2010; 10: 497–504.
[253]Young J Jeona, Seung H Hana, Yong W Leeb, Michael Leea, Kyu H Yangb, Hwan M Kima Dexamethasone inhibits IL-1β gene expression in LPS-stimulated RAW 264.7 cells by blocking NF-κB/Rel and AP-1 activation.Immunopharmacology Volume 48, Issue 2, 20 July 2000, Pages 173–183
[254]Huang GJ, Deng JS, Chen CC, Huang CJ, Sung PJ, Huang SS, and Kuo YH. Methanol Extract of Antrodia camphorata Protects against Lipopolysaccharide-Induced Acute Lung Injury by Suppressing NF-κB and MAPK Pathways in Mice. J. Agric. Food Chem. 2014, 62, 5321−5329
[255]Wang SW. Inhibitory effects of DBL from Phellinus linteus on LPS-induced inflammatory response in RAW264.7 macrophages. 2012