參考文獻
阮勝威。1996。由靈芝子實體經萃取後之殘渣所製成之薄膜對於天竺鼠傷口及組織纖維母細胞之影響,臺北醫學院醫學研究所碩士論文。孫啟書。1996。人工皮膚之可能材質?論靈芝薄膜對傷口癒合之影響,臺北醫學院醫學研究所碩士論文。林玫秀。2001。靈芝子實體殘渣衍生物的抗菌活性之研究,臺北醫學院醫學研究所碩士論文。劉淑慧。2001。由靈芝子實體殘渣製成薄膜對角質細胞及MMPs之影響,臺北醫學院醫學研究所碩士論文。朱祐生。2004。幾丁聚糖抑制細菌生長之轉機,臺北醫學大學生物醫學材料研究所碩士論文。Abraham JA and Klagsbrun M. Modulation of wound repair by members of the fibroblast growth factor family. In: The Molecular and Cellular Biology of Wound Repair (2nd ed.), edited by Clark RAF. New York: Plenum, 1996;195–248.
Aiba, S. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromol. 1992;14, 225-228.
Aiba, S. Studies on chitosan: 6. Relationship between N-acetyl group distribution pattern and chitinase digestibility of partially N-acetylated chitosans. Int. J. Biol. Macromol. 1993;15,241-245.
Andrew H. Baker, Dylan R. Edwards and Gillian Murphy. Metalloproeinase inhibitors: biological actions and therapeutic opportunities. Journal of Cell Science 2002;115 (19).
Assoian RK, Komoriya A, Meyers CA, Miller DM, and Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983;258: 7155–7160.
Beer HD, Longaker MT, and Werner S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J Invest Dermatol 1997;109: 132–138.
Beer HD, FA ¨ ssler R, and Werner S. Glucocorticoid-regulated gene expression during cutaneous wound repair. Vitam Horm 2000;59: 217–239.
Bilbred SA, et al: Chemical burn caused by benzalkonium chloride in eight surgical cases. J. Am Anim Hosp Assoc 1989, 25:31.
Bradley K. Draper, Mari K. Davidson, Lilian B. Nanney, MMPs & TIMP-1 are Differentially Expressed Between Acute Murine Excisional & Laser Wounds,Laser in Surgery & Medicine 2003, 30, 2: 106-116.
Brooke Barrick; Edward J. Campbell, MD; Caroline A. Owen, MD, PhD. Leukocyte proteinases in wound healing: roles in physiologic and pathologic processes. Wound REP REG 1999;7:410-422.
Breuing K, and Ree C, Helo G, Slama J, Liu PY, and Eriksson E. Growth factors in the repair of partial thickness porcine skin wounds. Plast Reconstr Surg 1997;100: 657–664.
Brown RL, Ormsby I, Doetschman TC, and Greenhalgh DG. Wound healing in the transforming growth factor-beta1-deficient mouse. Wound Repair Regen 1995;3: 25–36.
Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF, and Van De Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 1992;176: 1375–1379.
Bussolino, D., Di Renzo, M. F., Zioche, M. Et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology 1992; 119: 626-41.
Chen C, Su CH. Enhance Wound Healing: Fungal (Ganoderma tsugae) Artificial Skin- Preliminary Clinical Study Proceedings of 2003 6th Annual meeting of Japanese Society of Veterinary Dermatology, Tokyo Japan. 2003.
Chen C, Su CH. Su BL. Challenge Case: Idiopathic Chronic Recurrent Deep Pyoderma Proceedings of 2003 6th Annual meeting of Japanese Society of Veterinary Dermatology, Tokyo Japan. 2003.
Chen C, Su CH. Fungal (Ganoderma Tsugae) Wound Dressing- Human Model for Veterinary Usage. Preceeding of the Veterinary Wound Healing Association 6th Annual Scientific Meeting,Cardiff, Wales,UK. 2003.
Chin Chen, MS., Gregory, S Schultz., Melissa Bloch, BA., Paul D Edwards., Steve Tebes., Bruce A Mast. Molecule and mechanistic validation of delayed healing rat wounds as a model for human chronic wounds. Wound Rep Reg 1997;7:486-494.
Clark R.A.F. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 1993;306: 42–48.
Clark R.A.F. Wound repair; overview and general considerations. In Clark, R.A.F. (ed) The Molecular and Cellular Biology of Wound Repair, 2nd edn. London: Plenum Press, 1996:3-50.
Coyne BE, et al: Thermoeletric burns from improper grounding of electrocautric unit: Two case reports. J. Am Anim Hosp Assoc 1993, 29:7.
Christopher J. Schaffer et al. Comparisons of wound healing among excisional, laser-created, and standard thermal burns in porcine wounds of equal depth, Wound Rep Reg 1997;5:52-61.
Dagalakis, N., Flink, J., Stasikelis, P., Burke, JF., Yannas, IV. (1980). Design of an artificial skin. III. Control of pore structure. J. Biomed. Mater. Res. 14, 511-528.
David Fowler, John M. Williams eds. Manual of Canine and Feline Wound Management and Reconstruction, British Small Animal Veterinary Association, 1999.
Davidason JM. Wound repair. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation: implications for pulmonary emphysema in alpha1-antitrypsin deficiency. J Clin Invest 1999;104:179-90.
Dyson M. Advance in Wound helaing physiology: the comparative perspective. Vet Derm 8, 4:227-223 1997.
Ehrlicj, H. P. Wound closure ; evidence of cooperation between fibroblasts and collagen matrix. Eye 1988; 2: 149-57.
Embil JM and Nagai MK. Becaplermin: recombinant platelet-derived growth factor, a new treatment for healing diabetic foot ulcers. Exp Opin Biol Ther 2002;2: 211–218.
Evans, E. E. The use of basic polysaccharides in histochemistry and cytochemistry: IV. Precipitation and agglutination of biological materials by Aspergillus polysaccharides and deacetylated chitin. J. Histochem. Cytochem. 1962;10, 24-28.
Ferguson M.W. Acceleration of healing and improvement of scarring : from laboratory discovery to clinical practice. Veterinary Dermatology 15, 2004 supplement: p13.
Folkman J, Brem H. Angiogenesis and inflammation. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation: Basic principles and clinical correlates, 2nd edition. New York: Raven Press, 1992;821-39.
Frank S, HU’Bner G, Breier G, Longaker MT, Greenhalgh DG, and Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes: implications for normal and impaired wound healing. J Biol Chem 1995;270: 12607–12613.
Fukada, Y., Kimura, K. and Ayaki, Y. Effect of chitosan feeding on intestinal bile acid metabolism in rats. Lipids. 1991;26, 395-399.
Gabbiani, G., Ryan, G. B., Majno, G. Presence of modified fibroblasts in granulation tissue, and their possible role in wound contraction. Experientia 1971; 27: 549-50.
Gale NW and Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 1999;13: 1055–1066.
Groos, TL, Ihrke PJ, Walder EJ. Veterinary Dermatopathology A Macroscopic and Microscopic Evaluation of Canine and Feline Skin Disease. Mosby Year Book 1992.
Hargis MM, Lewis TPⅡ: Full-thickness cutaneous burn in black-haired skin on the dorsum of the body of a Dalmatian puppy. Vet. Pathol 1999;10:39.
Harris IR, Yee KC, Walters CE, Cunliffe WJ, Kerney JN, Wood EJ, and Ingham E. Cytokine and protease levels in healing and non-healing chronic venous leg ulcers. Exp Dermatol 1995;4: 342–349.
Herrmann,J. B. and Woodward, S. C. An experimental study of wound healing accelerators. American Surgeon. 1972;26-34.
Heldin CH and Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79:1283–1316.
Heldin CH, Eriksson U, and O¨ stman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys 2002;398: 284–290.
Hinrich, LJ., Lommen, EJ., Wildevuur, CRH., Feijen, J. Fifraction and characterization of an asymmetric polyurethane membrane for use as a wound dressing. J. Appl. Biomater. 1992;3, 287-303.
Kakebic, T., Garbisa, S., Galser, B., Liotta, L. A. Basement membrane collagen ; degradation by migrating endothelial cells. Science 1983; 221: 281-3.
KA’mpfer H, Pfeilschifter J, and Frank S. Expressional regulation of angiopoietin-1 and -2 and the Tie-1 and -2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab Invest 2001;81: 361–373
Kirsner R. S. and Eaglstein W. H. The wound healing process. Dermatologic Clinics. 1993;11, 629-640.
Knorr, D. (1984). Use of chitinous polymers in food. Food Technol. 45, 114-122.
Lauer G, Sollberg S, Cole M, Flamme I, Sturzebecher J, Mann K, Krieg T, and Eming SA. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 2000;115: 12–18.
McDonald, J. A., Quade, B. J., Broekelmann, T. J. et al. Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in the assembly into fibroblast pericellular matrix. Journal of Biological Chemistry 1987; 262: 2957-67.
Matsuka J and Grotendorst GR. Two peptides related to plateletderived growth factor are present in human wound fluid. Proc Natl Acad Sci USA 1989;86: 4416–4420.
Matsuda, K., Suzuki, S., Isshiki, N., Yoshioka, K., Wada, R., Hyon, SH., Ikada, Y. Evaluation of bilayer artificial skin capable of sustained release of an antibiotic. Biomaterials. 1992;14, 1030-1035.
Massague´ J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6: 597–641.
Massague´ J. TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.
Moncada, S., Gryglewski, R., Bunting, S., Vane, J.R. An enzyme isolated from arteries transforms prostoglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976 ; 263 :663-5.
Mori,T., Okumura, M., Matsura, M., Ueno, K., Tokura,S., Okamoto, Y., Minami, S. and Fujinaga, T. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials. 1997;18, 947-951.
Muller GH, et al: Small Animal Dermatology Ⅳ W.B. Saunders Co. Philadelphia, 1989
Murphy G, Docherty AJP. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol 1992;7:120-5
Nakajima, M., Atsumi, K., Kifune, K. Chitin is an effective material for sutures. Japan. J. Surg. 1986;16, 418-424
Newman, S.L., Henson, J.E., Henson, P.M. Phagocytosis of senscent neutrophils by human monocyte derived macrophages and rabbit inflammatory macrophages. Journal of Experimental Medicine 1982; 156: 430-42.
Nishimura, K., Ishihara, C., Ukei, S.(1986). Stimulation of cytokine production in mice using deacetylated chitin. Vaccine. 5, 136-140.
Nishimura, K., Nishimura, S., Seo, H., Nishi, N., Tokura, S., and Azuma, I. Effect of multipoprous microspheres derived from chitin on the activation of mouse peritoneal macrophages. Vaccine. 1987;5, 136-140.
Nishimura, S., Nishi N., Tokura., S. Bioactive chitin derivatives. Activation of mouse-peritoneal macrophages by O-carboxymethyl chitins. Carbohydrate Research. 1986 ;146, 251-258
Padrines M, Wolf M, Walz A, Baggiolini M. Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett 1994;352:231-5.
Peluso, G., Petillo, O., Ranieri M. Chitosam-mediated stimulation of macrophage fumction. Biomaterials. 1994;15, 1215-1220.
Peters KG, Devries C, and Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci USA 1993;90: 8915–8919.
Pierce, G.F., Mustoe, T.A., Lingelbach, J. et al. Platelet derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. Journal of cell Biology 1989 ; 109 :429-40.
Pierce GF, Tarpley JE, Tseng J, Bready J, Chang D, Kenney WC, Rudolph R, Robson MC, Vande Berg J, Reid P, Kaufman S, and Farrell CL. Detection of platelet-derived growth factor (PDGF)-AA in actively healing human wounds treated with recombinant PDGF-BB and absence of PDGF in chronic nonhealing wounds. J Clin Invest 1995; 96: 1336–1350.
Reedy LM, Clubb FJ: Microwave burn in a Toy Poodle: A case report. J. Am Anim Hosp Assoc 1991;27:497.
Riches, D.W.H. Macrophage involvement in wound repair, remodeling and fibrosis. In Clark, R.A.F. (ed). The Molecular and Cellular Biology of Wound Repair, 2nd edn. London : Plenum Press. 1996 : 95-141.
Robert D. Galiano, Oren M. Tepper, Catherine R. Pelo, Kirit A. Bhatt, Matthew Callaghan, Nicholas Bastidas, Stuart Bunting, Hope G. Steinmetz, and Geoffrey C. Gurtner. Topical Vascular Endothelial Growth Factor Accelerates Diabetic Wound Healing through Increased Angiogenesis and by Mobilizing and Recruiting Bone Marrow-Derived Cells. American Journal of Pathology 2004;164:6.
Roberts AB and Sporn MB. Transforming growth factor-beta_. In: The Molecular and Cellular Biology of Wound Repair (2nd ed.), edited by Clark RAF. New York: Plenum, 1996;275–30.
Ruoslahti, E. Fibronectin and its receptors, annual Review of Biochemistry 1988 ; 57 : 375-413
Rouslahti, E. Intergrin. Journal of Clinical Investigation 1991; 87: 1-5.
Sarrialho-Kere, UK., Kovacs, SO., Pentland, AP., et al. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes activity involved in wound healing. J. Clin. Inverst.. 1993;92, 2858-2866.
Schilling, J. A. Wound healing. Surgical Clinics of North America. 1976;56, 859-874.
Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J Immunol 1998;161:3340-6.
Scott D.W., Miller, W.H., Griffin, C.E. (ed). Muller & Kirk’s Small Animal Dermatology 6th edn. W.B. Saunders Company, Philadelphia 1-71.
Shyu, S. S., Mi, F.L., Wu, Y. B., Lee, S. T., Shyong, J.Y., Huang, R. N. abrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 2001;22,165-173.
Sirica, A. E. Selective aggregation of L1210 leukemia cells by the polycation chitosan. J. Nat. Cancer Inst. 1971;47, 377-388.
Stricklin, GP., Nanney, LB. Immunolocalization of collagenase and TIMP in healing human burn wound. J. Invest. Dermatol. 1994;103, 488-492.
Su, C. H., Juan, S. W., Sun, C.H., and Tung, I.C. Application of extracted waste from basidiomes of Ganoderma for healing enhancement of skin wound. In Mushroom Biology and Mushroom Product, Edi. D. J. Royse, Pen. State University, 1996;195-204.
Su, C. H., Sun, C.H., Juan, S. W., Hu, C. H., Ke, W. T., Sheu, M. T. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials. 1997;18, 1169-1174.
Su, C. H., Sun C.H., Juan, S. W., Ho, H. O, Hu, C. H., Sheu, M. T. Development of fungal mycelia as skin substitutes: Effects on wound healing and fibroblast. Biomaterials. 1999;20, 61-68.
Su, C. H., Liu, S. H., Yu, A. Y., Hsieh et al. Development of fungal mycelia as a skin substitute : Characterization of keratinocyte proliferation and matrix metalloproteinase expression during improvement in the wound-healing process. Published online 10 December 2004 in Wiley InterScience (www.interscience.wiley.com) DOI:10.1002/jbm.a.30235
Suzuki, S., Okawa, Y., Okura, Y., Hashimoto, K. and Suzuki, M. Proceedings of the second international conference on chitin and chitosan. Sapporp, Japan., 1982;pp. 210-212.
Suzuki, S., Watanabe, T., Mikami, T., Matsumoto, T. and Suzuki, M. Immuno-enhancing effects of N-acetyl-chitohexanose. In advance in chitin and chitosan, pp 96-105. Brine, C. J., Sandford, P. A. and Zikakis, J. P. (ed.). Elservier Applied Science, N. Y. 1992
Swaim SF, et al: Heating pad and thermal burns in small animals. J. Am Anim Hosp Assoc 1989;25:156.
Turner, T. D. Interactive dressing used in the management of human soft tissue injures and their potential in veterinary practice. Veterinary Dermatology, 1997; 8: 235-41.
Ursula Mirastschijskia, Carol J. Haaksmab, James J. Tomasekb, Magnus S. A grenc. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Experimental Cell Research 2004;299:465– 475.
Usami, Y., Okamoto Y., Minami, S. Chitin and chitosan induce migration of bovine polymorphonuclear cells. J. Veter. Med. Sci. 1994; 56, 761-762.
Usami, Y., Okamoto Y., Minami, S. Migration of canine neutrophils to chitin and chitosan. J. Veter. Med. Sci. 1994;56, 1215-1216.
Willam C. PARKS, PhD. Matrix metalloproteinases in repair. Wound Rep Reg 1999;7:423-432.
Williams, P. L., Bannister, L. H., Berry, M. M., Collins, P., Dyson, M., Ferguson, M. W. J. (eds). Gray’s Anatomy, 38th edn. Edingurgh : Churchill Livingston, 1995; 387-417.
Wolpe, S.D., Cerami, A. Macrophage inflammatory protein 1 and 2 : Members of a novel superfamily of cytokines. FASEB Journal 1989; 3: 2565-73.
Wysocki, AB., Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J. Invest. Dermatol. 1993;101, 64-68.
Yamada, K.M., Clark, R.A.F. Provisional Matrix. In Clark, R.A.F. (ed). The Molecular and Cellular Biology of Wound Repair, 2 nd edn. London ; Plenum Press, 1996; 51-94.
Yannas, IV., Burke, JF. Design of an artificial Skin. I. Basic design principles. J. Biomed. Mater. Res. 1980;14, 65-81.
Young, PK., Grinnell F. Metalloproteinase activation cascade after burn injury: a longitudinal analysis of the human wound environment. J. Inv. Derma. 1994;103, 660-664.