|
1.Amthor, J.S., Dale, V.H., Edwards, N.T., Garten, C.T., Gunderson, C.A., Hanson, P.J., Huston, M.A., King, A.W., Luxmoore, R.J., McLaughlin, S.B., Marland, G., Mulholland, P.J., Norby, R.J., O’Neill E.G., O’Neill R.V., Post W.M., Shriner D.S., Todd D.E., Tschaplinski T.J., Turner R.S., Tuskan G.A., Wullschleger S.D., 1998, Terrestrial ecosystem responses to global change: a research strategy. ORNL Technical Memorandum 1998/27. Oak Ridge National Laboratory, Oak Ridge 2.Anderson, C.J., Mitsch, W.J., 2006. Sediment, carbon, and nutrient accumulation at tow 10-year-old created riverine marshes. Wetlands 26, 779-792. 3.Aselman, I., Crutzen, P.J., 1989, A global inventory of wetland distribution and seasonality, net primary productivity, and estimated methane emissions. In A.F. Bouwman, ed. Soils and Greenhouse effect. John wiley & Sons, New York, pp 441-449. 4.Asmus, R., 2003, Field measurements on seasonal variation of the activity of primary producers on a sandy tidal flat in the northern Wadden sea, Netherlands Journal of Sea Research, 16:389-402. 5.Bartlett, K.B., Harris, R.C., 1993, Review and assessment of methane emissions from wetlands. Chemosphere 26:261-320. 6.Bouillon, S.,et al., 2008, Mangrove production and carbon sinks: A revision of global buget estimates, Global biogeochem. Cycles, 22,GB2013,doi:10.1029/2007GB003052. 7.Brix, H., Sorrell, B.K., Lorenzen, B., 2001, Are Phragmites- dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69, 313–324. 8.Charpy-Roubaud. C., Sournia. A., 1990, The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans, Marine Microbial Food Webs, 4 (1) : 31-57. 9.Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., Lynch, J. C., 2003, Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles, 17(4),1111, doi: 10.1029/2002GB001917. 10.Choi, Y., Wang, Y., 2004, Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Cycles, 18, doi:10.1029/2004GB002261. 11.Cowardin, L. M., 1978, Wetland classification in the United States. J. For.76(10):666-668. 12.Euliss, N.H., Gleason, J., Charpy-Roubaud. C., Sournia. A., 1990, The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans, Marine Microbial Food Webs, 4 (1) : 31-57. 13.Gorham, E., 1991, Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1, 182–195. 14.Gorham, E., 1991, Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1, 182–195. 15.Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., Tsuruta, H., 2005, Greenhouse gas emission from tropical peatlands of Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems 71, 73-98. 16.Hemond, H.F., 1980, Biochemistry of Thoreau’s Bog, Concord, 17.Hubas. C., Lamy. D., Artigas. L. F., 2007, Seasonal variability of intertidal bacterial metabolism and growth efficiency in an exposed sandy beach during low tide, Mar Biol, 151:41–52. 18.Kayranli, B., Scholz, M., Mustafa, A. and Hedmark, Å., 2010, Carbon storage and fluxes within 7 freshwater wetlands: a critical review. Wetlands. 30, 111-124. 19.Komiyama, Ong, A., J. E., Poungparn, S., 2008, Allometry, biomass, and productivity of mangrove forests: A review, Aquat. Bot. 89, 128-137. 20.Kone, Y. J. M., Abril, G., Kouadio, K. N., Delille, B., Borges, A. V., 2009, Seasonal variability of carbon dioxide in the rivers and lagoons of lvory Coast (West Africa). Estuaries and Coasts 32, 246-260. 21.LeMer, J., Roger, P., 2001, Production, oxidation, emission, and consumption of methane by soils: a review. European Journal of Soil Biology 37, 25-50. 22.Lovett, G.M., Cole, J.J., Pace, M.L., 2006, Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9, 152-155. 23.IPCC, 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4, Agriculture Forestry and Other Land Use. Institute for Global Environmental Strategies, Hayama. 24.IPCC, 2007, Climate Change 2007: The Physical Science Basis. Published for the Intergovernmental Panel on Climate Changs (IPCC). Cambridge University Press, UK. 25.Kristensen, E., Bouillon, S., Marchand, C., 2008, Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany 89,201–219 26.Leach, J.H., 1970, Epibenthic algal production in an intertidal mudflat. Limnology and Oceanography 15, 514–521. 27.Matthews, E., Fung, I., 1987, Methane emission from natural wetlands: global distribution, area, and environmenta 28.Malmer, N., 1975, Development of bog mires. In A.D. Hasler, ed. Coupling of Land and Water System. Ecology Studies 10. Springer-Verlag, New York, pp. 85-92. 29.Matthews, C.J.D., St. Louis, V.L., Hesslein, R. H., 2003, Comparison of three techniques used to measure diffusive gas exchang from sheltered aquatic surfaces. Environ. Sci. Technol. 37, 772-780. 30.Mander, U., Lõhmusa, K., Teiter, S., Nurka, K., Mauring, T., Augustin, J., 2008, Gaseous fluxes from subsurface flow constructed wetlands for wastewater treatment. Journal of Environmental Science and Health, Part A 40, 1215-1226. 31.McCarty G.W., Ritchie J.C., 2002, Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution 116:423–430. 32.Migne, A., Davoult, D., Plilmount, N., Menu, D., Boucher, G., Guttuso, J.P., Rybarczyk, H., 2002, A closed-chamber CO2-flux method for estimating intertidal primary production and respiration under emersed conditions. Marine Biology 140, 865-869. 33.Migne. A., Spilmont. N., Davoult. D., 2004, In situ measurements of benthic primary production during emersion: seasonal variations andannual production in the Bay of Somme (eastern English Channel, France),Continental Shelf Research 24,1437–1449. 34.Migne. A., Spilmont. N., Boucher. G., Denis. L., Hubas. C., Janquin. M.-A., Rauch. M., Davoult. D., 2009, Annual budget of benthic production in Mont Saint-Michel Bay considering cloudiness, microphytobenthos migration, and variability of respiration rates with tidal conditions,Continental Shelf Research 29, 2280-2285. 35.Mitra, B.K., Karim, A.J.M.S., Haque, M.M., Ahmed, G.J.U. and Bari, M.N., 2005, Effect of weed management practices on transplanted aman rice. J. Agron., 4: 238-241. 36.Mitsch W.J., Wu, X., 1995, Wetland and global change. In Lal, R., Kimble, J., Levine, E., Stewart, B.A. eds. Advances in Soil Science, Soil Management, and Greenhouse Effect. CRC/Press/Lewis Publishers, Boca Raton, FL. 37.Mitsch, W.J., Gosselink, J.G., 2007, Wetlands, 4th edn. Wiley, New York. 38.Moore, T.R., Bellamy, D.J., 1974, Peatlands. Springer-Verlag, 39.Olness, R.A., McDougal, A., Murkin, R.L., Robarts, H.R., Bourbonniere, R.D., Warner, R.A., 2006, North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361:179–188. 40.Pamatmat, M.M., 1968, Ecology and metabolism of a benthic community on an intertidal sandflat. Internationale Revue der gesamten Hydrobiologie 53, 211–298. 41.Pomeroy, L.R., 1959, Algal productivity in salt marshes of Georgia. Limnology and Oceanography 4, 386–397. 42.Roulet, N.T., 2000, Peatland, carbon storage, greenhouse gases, and Kyoto Protocol: prospects and significance for Canada. Wetlands 20, 605-615. 43.Roulet, N.T., Lafleur, P.M., Richard, P.J.H., Moore, T.R., Humphreys, E.R., Bubier, J.L., 2007, Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13, 397-411. 44.Schlesinger, W.H., 1991, Biogeochemistry: an analysis of global change. Academic, San Diego. 45.Spilmont. N., Migne. A., Lefebvre. A., Artigas. L. F., Rauch. M., 2005, Davoult. D., Temporal variability of intertidal benthic metabolism under emersed conditions in an exposed sandy beach(Wimereux, eastern English Channel, France),Journal of Sea Research 53, 161– 167. 46.Spilmont. N., Davoult. D., Migne. A., 2006, Benthic primary production during emersion: In situ measurements and potential primary production in the Seine Estuary (English Channel, France), Marine Pollution Bulletin 53, 49–55. 47.Trumbore, S.E., Bubier, J.L., Harden, J.W., Grill, P.M., 1999, Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research 104 (D22), 27,673-27,682. 48.Urban-Malinga. B., Wiktor. J., 2003, Microphytobenthic primary production along a non-tidal sandy beach gradient: an annual study from the Baltic Sea, OCEANOLOGIA, 45 (4):705-720. 49.Trumbore, S.E., Bubier, J.L., Harden, J.W., Grill, P.M., 1999, Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research.104 (D22), 27,673-27,682. 50.Webb, W.L., Newton, M., Starr, D., 1974, Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17, 281–291. 51.Whitting, G.J., Chanton, J.P., 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53:521–528. 52.Worrall, F., Reed, M., Warburton, J., Burt, T., 2003, Carbon budget for British upland peat catchment. The Science of the Total Environment 312, 133-146. 53.Zoltai, S.C, 1988, "Wetland Environments and Classification" Wetlands of Canada Montreal: Environment Canada and Polyscience Publications Inc., 3 -26. 54.內政部營建署城鄉發展分署,2011。國家重要濕地碳匯功能調查計畫,結案報告。 55.王銀波、謝學武,1997。台灣中南部水稻田、旱田、濕地、林地、及坡地土壤甲烷之釋出及其影響因子。台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),pp.99-121。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。 56.方偉達、王候凱、何一先、李育維、吳麗蘭、林長興、洪宗翰 張瑞麟、陳介鵬、陳雅惠、黃有利、蔡錦香,2008,國家重要濕地導覽手冊,內政部營建署,第2-9頁。 57.林幸助、薛美莉、陳添水、何東輯,2009,濕地生態系生物多樣性監測系統標準作業程序,行政院農業委員會特有生物研究保育中心,第9-43頁。
|