[1]林育利,使用類神經網路結合支撐向量機之分類器研究,碩士論文,國立中央大學光機電工程研究所,2008。[2]J.Ozols, A.Borisov,“Fuzzy classification based on pattern projections analysis”, Pattern Recognition, vol.34, pp.763-781, 2001.
[3]C.–L. Huang, C.–J. Wang, “A GA-based feature selection and parameters optimization for support vector machines”, Expert Systems with Applications, vol. 31, pp. 231–240, 2006.
[4]V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[5]S.–W. Lin, Z. –J .Lee, S.–C. Chen ,T. –Y Tseng,“Parameter determination of support vector machine and feature selection using simulated annealing approach”, Applied Soft Computing,vol.8, pp.1505–1512, 2008.
[6]V. Cherkassky , Y. Ma,“Practical selection of SVM parameters and noise estimation for SVM regression”, Neural Networks , vol.17 ,pp.113–126, 2004.
[7]K. –P. Wu , S. –D. Wang, “Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space”, Pattern Recognition, vol.42,pp.710– 717, 2008.
[8]E. Comak, A. Arslan,“A new training method for support vector machines: Clustering k-NN support vector machines”, Expert Systems with Applications, vol.35,pp.564–568, 2008.
[9] S–J. Lee,“Using data envelopment analysis and decision trees for efficiency analysis and recommendation of B2C controls”, Decision Support Systems,vol.49,pp.486-497,2010.
[10]S.–W. Lin, Z. –J .Lee, S.–C. Chen ,T. –Y Tseng,“Parameter determination of support vector machine and feature selection using simulated annealing approach”, Applied Soft Computing,vol.8, pp.1505–1512, 2008.
[11]C. –C. Chang ,C. –J. Lin ,Libsvm:a library for support vector machines.[Online]Available from World Wide Web:< http://www.csie.ntu.edu.tw/~cjlin/libsvm/>.
[12]C.–C. Chang ,C. –J. Lin ,Libsvm:a library for support vector machines .[Online]Available from World Wide Web:< http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/>.
[13] J. Ozols, A. Borisov,“Fuzzy classication based on pattern projections analysis”, Pattern Recognition,vol.34,pp.763–781,2001.
[14]D. Zhang, S. Chen, Z. –H Zhou, “Learning the kernel parameters in kernel minimum distance classifier”, Pattern Recognition,vol.39,pp.133–135,2006.
[15]J.Wanga,H. –A.Lub,K. –N.Plataniotisb,J. –W.L,“Gaussian kernel optimization for pattern classification , Pattern Recognition,vol.39,pp.133 –135,2006.
[16]E . Avci ,“Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm–support vector machines: HGASVM ”, Expert System with Application , vol.36,pp1391-1402,2009
[17] A.Chalimourda, B.Scho, A. –J. Smola,“Experimentally optimal n in support vector regression for different noise models and parameter settings”,Neural Networks,vol.17,pp.127–141,2004.
[18]O.Yilmaz,E. –K .Achenie , R .Srivastava ,”Systematic tuning of parameters in support vector clustering”,Mathematical Biosciences, vol .205 ,pp.252 – 270,2007.
[19] A. Kulkarni, V. –K. Jayaraman, B. –D. Kulkarni,“Support vector classification with parameter tuning assisited by agent-based rechnique”,Computers and Chemical Engineering,vol.28,pp.311–318,2004.
[20]M. –H. Wang ,C. –P. Hung ,”Extention neural network and its application”,Neural Networks ,vol.16,pp.779–784,2003.