跳到主要內容

臺灣博碩士論文加值系統

(54.147.0.155) 您好!臺灣時間:2024/03/29 19:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉沂欣
研究生(外文):LIU YI-HSIN
論文名稱:孔洞材料修飾:有機矽烷化,官能基酯化非矽金屬氧化物嫁接二氧化矽表面
論文名稱(外文):MOdification and Coating of mesoporous silica: Silylation, Esterification and Metal Oxides Grafting
指導教授:牟中原
指導教授(外文):Mou Chung-Yuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:245
中文關鍵詞:有機矽烷酯化金屬氧化物嫁接步驟修飾
外文關鍵詞:SilylationEsterificationMetal Oxides graftingone-step modification
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1890
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:1
利用四級銨鹽所合成的中孔洞材料(2~10nm),提供了奈米和空問限制化學一個很好的研究領域,其提供的超大表面積(> 1000 m2/g),可吸附孔體積,和周期性的六角孔道排列結構,都成為近年來熱門奈米科學中重要的一環o這樣的二氧化矽材料,不僅俱有不同外觀,更可藉由表面修飾的工作,來增強水熱能性及合成其他奈米洞物質o
利用在二氧化矽表面之大量的Si-OH官能基,我們進行一連串以有機矽烷(Organic silanes)及金屬的烷氧化合物(Metal alkoxides M=Ti, Zr, Al,)的修飾工作,不僅改善原本的水熱能性,同時也引入具催化活性的金屬中心的。使用在酸性條件下合成,或是經酸化後的中孔材料,以溫和的條件,在極性溶劑萃取板模的同時,修飾上各類有機矽烷或是有機醇類,及金屬的氧化合物,並置換原本的四級銨鹽與Si-OH的氫鍵作用力。這樣的方式,可以在表面可以修飾上很均勻的單層矽烷,酯類或是塗佈覆蓋高分散性的金屬氧化物。除了在X光粉末繞射上,可以看見規則排列的孔洞繞射峰外,氮氣等溫吸附和脫附更加以推算出半徑分佈及孔洞體積。有機矽烷定量方面,我們藉由元素分析,求出每一克二氧化矽的中孔洞材料表面上有機含量,且對於不同矽烷,修飾量可高達3~6 mmole/g SiO2,比起傳統繁雜的方法高了近1/2。在這樣的固-液相反應,則可以利用Lagmuir isotherm的單層假設,計算出各類的矽烷修飾在二氧化矽上的吸附平衡常數,其值分別介於1~90 (1/M)的範圍內,並區分為三大類。
至於在金屬氧化物方面,ICP-AES的結果顯示有10~45 wt%的金屬氧化物高分散在中孔材料上,而矽對各金屬的莫耳比也在介在4~20之間。應用方面,含二氧化鈦覆蓋的中孔材料可對於酚俱有光催化性質;而三氧化二鋁覆蓋的中孔材料,則對於cumene的裂解表現出比一般中孔料材更佳的催化的活性。

In this chapter, we will report the organic and inorganic modification on the mesoporous silica. The modification, including silylation, esterification and metal oxide grafting are investigated in the thesis. All the organic and inorganic compounds are anchored on the surface via acting with silanols (Si-OH) to form the stronger chemical bonding. The reactions are represented as following:
A) Si-O-H + R1O-SiR23 --> Si-O-SiR23 + H-O-R1
B) Si-O-H + HO-R3 --> Si- OR3 + H-O-H
C) Si-O-H + (R4O)3Al --> Si- O Al (R4O)2 + H-O- R4
R1 R2 R3 R4 can be alkyl or aryl groups during modification
The modification is processed in the mild condition at refluxing for 3~24h. Silanes or metal alkoxides is mixed with the NO3-made mesoprous silica (NMMS) in the solution of EtOH or 1-PrOH. Due to the weaker hydrogen interaction of S+X-...I0 and neutral silica wall of the NMMS, the neutral organic template (S+X-) could be facilely extracted by polar solvent without a necessity of ion exchange for the S+I- ones. The strong chemical covalent-bonding is formed and substitutes the original weak hydrogen-bonding between the interfaces of the silica surface.
The larger amounts of loading are achieved in this procedure compared to the previous reports [Zhao1998a] [Kimura1999a] [Corma 2001a]. Moreover, the friendly alcohols are used as solvents, instead of toxic silanes [Jaroniec 1999a]. The extracted surfactants can be recovered and reproduced as templates of the mesoporous silica, avoiding the huge waste of quaternary ammonium surfactants. The modification results will be elucidated and discussed in the following chapter:
The silylation modification is discussed in the Chapter 3.1.1 to 3.1.4. The detail data of the silylated NMMS are analyzed and listed in the 3.1.1, while 3.1.2 will show some application of the functionalized NMMS to the absorption of organic and inorganic substrates. The silylation is taken in the liquid-solid condition, which can be regarded as the chemical absorption of organic silanes. The isotherm curve can be gotten by adjusting different concentration of silanes at refluxing condition. Hence, extended and modified Langmuir equation can be used to calculate the equilibrium constants in 3.1.3. The residue of silane solution can be further used to fabricate the organic-inorganic hybrid mesoporous silica. In 3.1.4, the co-condensation with TEOS and silanes of the acid-made mesoporous silica can be processed under the modified procedure and the mesoporous silica of the non-hexagonal mesophase is also made.
The thermo and hydrothermal stability of NMMS we used are tested and strengthened in the chapter 3.2.1. MCM-41 and MCM-48, made in alkaline condition, cannot be directly modified in this one-step process, because the bonding between the surfactants and silica are too strong to be replaced by the silanes, except in pure silane solvent [Jaroniec 1999a]. The acidification is the key process to weaken the bonding and makes the MCMs and other alkaline-made mesoporous silica materials accessible in this one-step modification. The bonding transformation and modification of silanes are studied in 3.2.2. Moreover, the extraction of templates in NMMS, MCM-41 and SBA-15 also reported in 3.2.3. The removal of templates via extraction is more economic and preserves more active silanols on the surface. Because the high temperature calcinations (560~580oC) makes the contraction of silica matrix and loss of silanols for the silanol condensation.
Chapter 3.2.4 and 3.2.5 will report some results of esterification from high carbon chain and organic functional groups of the alcohols. Esterification is very important in the application of silica materials to enhance the hydrophobic property. Notwithstanding the hydrolytic stability is always the drawback during application, some interesting compounds and metal ions can be introduced into the nano-channels of mesoporous silica in non-aqueous solution after surface modification via esterification. Furfuryl alcohol, a heterocyclic compounds, is also anchored on the silica surface during esterification in 3.2.6. In high temperature (100~200oC), the heterocyclic ring will polymerize and form the graphite-like carbon inside the nanochannels after 800oC pyrolysis of N2. The property of the silica surface can be tuned to very hydrophobic and graphite-like surface can be very interesting in fuel-cell applications and gas storage studies.
Ti, Zr and Al are three common metals of the heterogeneous catalysts. Chapter 3.3.1 and 3.3.2 will discuss the results of TiO2 and ZrO2 grated on the mesoporous silica. Their thermal and hydrothermal stabilities are strengthened which regarded as the monolayer of metal oxides coating on the silica surface. Other detail physical characterization and chemical analysis are also reported in the parts of thesis. Besides, Al2O3 is also grafted onto the mesoporous silica surface via the similar coating of the one-step process. The additional Al2O3 coating will further protect the mesophase from the thermal and hydrothermal stabilities tests in Chapter 3.3.5. The extra high loading of Al2O3 (Si/Al<4) will be very impressive and active toward the cracking and alkylation reaction.

Index Page
Chapter one Introduction
1.1 Mesoporous Materials 1
1.2 Mesoporous Silicas with Organically Modified Surfaces 2
1.2.1 Postsynthesis Procedures 3
1.2.2 Multi-functionality of Postsynthesis 6
1.2.3 One-step Postsynthesis 8
1.3 Esterification 9
1.4 Co-condensation with Functional Silanes 11
1.5 Coupling of Functional Silanes and Their Use in Complex Anchoring 12
1.6 Acidification of MCM-41 and MCM-48 15
1.7 Mesoporous Silicas Anchoring with Metal Oxdies 17
1.8 Titanium Catalysts Supported on Mesoporous Silica 18
1.8.1 Direct Synthesis of Mesoporous Titanosilicate Materials 18
1.8.2 Postsynthetic Grafting of Titanium onto Mesoporous Silica 20
1.9 Postsynthetic Grafting of Zirconium onto Mesoporous Silica 23
1.10 Nanoparticle of Fe2O3 on the Mesoporous Silica 24
1.11.1 Direct Synthesis of Mesoporous Aluminosilicate Materials 26
1.11.2 Postsynthetic Grafting of Aluminum onto Mesoporous Silica 26
Chapter two Experiment Section
2.1 Chemicals Agents 30
2.2 Characterization 33
2.3.1 Synthesis of the Acid-made Mesoporous Materials 35
2.3.2 Synthesis of SBA-15 36
2.3.3 Synthesis of MCM-41 and MCM-48 36
2.4 Direct Silane Modification of the Mesoporous Silicas 37
2.5.1 MCMs Interaction-transformation 38
2.5.2 Templates Extraction 38
2.5.3 Esterification of Mesoporous Silica
2.6 Metal Oxides Grafting onto Mesoporous Silica 39
2.6.1 Group IV — Ti, Zr 39
2.6.2 Group VI — Mo, W 40
2.6.3 Group VIII— Fe 40
2.6.4 Group XI — Al, Tl 41
2.6.5 Group XII — Si, Sn 42
2.6.6 Thermal Stability Tests 42
Chapter three Results and Discussion
3.1.1 One-step Modification of Organosilanes 48
3.1.2 Application of Functionalized Mesoporous Silica 94
3.1.3 Langmuir Absorption Study 102
3.1.4 Co-condensation with Organosilanes 128
3.2.1 The Stability and Properties of Acid-made Mesoporous Silica 132
3.2.2 Acidification and Modification of MCM-41 and MCM-48 139
3.2.3 Templates Extraction of Mesoporous Silica 154
3.2.4 Esterification of alkanol 170
3.2.5 Esterification of functional alcohol 181
3.2.6 The Modification of meso-carbon 190
3.3.1 The Chemical Grafting of Tititnium Oxide 198
3.3.2 The Chemical Grafting of Zirconium Oxide 222
3.4 The Nanoparticles and Chemical Coating of Fe2O3 onto the Mesoporous Silica
3.5 The chemical coating of Al2O3 onto Mesoporous Silica 246
Chapter Four Conclusion
4.1 Silylation 270
4.2 Acidification 271
4.3 Esterification and Extraction 271
4.4 Metal Oxides Grafting 272

Vettraino, M.; He, X.; Trudeau, M.; Antonelli, D. M. J. Mater. Chem. 2001, 11, 1755
R. Anwander, C. Palm, G. Gerstberger, O. Groeger, G. Engelhard Chem. Commun., 1998, 1811
R. Anwarder, C. Palm, O. Groeger, G. Engelhard Organometallics., 1998, 17, 2027
Aronson, B. J.; Blanford, C. F.; Stein, A. Chem. Mater. 1997, 9, 2842.
Anne Cauvel, Gibert Renard, Daniel Brunel J. Org. chem. 1997, 62, 749
Bruno R. Guidotti, Walter R. Caseri, Ulrich W. Suter Langmuir 1996, 12, 4391
Cauvel, A.; Renard, G.; Brunel, D. J. Org. Chem. 1997, 62, 749.
Jacob A. Elings, Rachida Ait-Meddour, James H. Clark and Duncan J. Macquarrie Chem. Commun., 1998, 2707
M. A. Camblor, A. Corma, P. Esteve, A. Mart´ýnez and S. Valencia, Chem. Commun., 1997, 795
M. L. Pena, V. Dellarocaa, F. Rey, A. Corma, S. Coluccia, L. Marchese Micrporous and Mesoporous Materials 2001, 44, 345
C. Chen, H. Li, M. E. Davis, Microporous Materials 1993, 2, 17.
M. J. Annen, M. E. Davis, Microporous Materials 1993, 1, 57.
Dang, Z.; Anderson, B. G.; Amenomiya, Y.; Morrow, B. A. J. Phys. Chem. 1995, 99, 14437.
I. Diaz, C. Marquez-Alvarez, F. Mohino, Pe’rez-Pariente J. Cata. 2000, 193, 283
P. K. Dutta, B. D. Barco, J. Phys. Chem. 1988, 92, 354
Farges, F.; Brown Jr., G.E.; Rehr, J. J. Geochim. Cosmochim. Acta 1996, 60, 3023
Michael Froba, Ralf Kohn, Gaelle Bouffaud Chem. Mater. 1999, 11, 2858
R. C. Gravie, M. F. Gross, J. Mater. Sci. 21 (1986) 1253
S. J. Gregg and K. S. W. Sing Adsorption, surface area, and porosity; London ; New York : Academic Press, 1967
Simon R. Hall, Christable E. Fowler, Benedicte Lebeau and Stephen Mann Chem. Coummun, 1999, 201-202
Yin-yan Huang, Bi-ying Zhao, You-Chang Xie Applied Catalysis A: General 1998, 173, 26
D.R.C. Huybrechts, L. De Bruycker, P.A. Jacobs, Nature 345 (1990) 240.
Ishikawa, T.; Matsuda, M.; Yasukawa, A.; Kandori, K.; Inagaki, S.; Fukushima, T,; Kondo, S. J. Chem. Soc. Faraday Trans. 1996, 92, 1985
Tatsuo Kimura, et.al. Langmuir 1999, 15, 2794-2798
Klissurski, D.; Hadjiivanov, K.; Kantcheva, M.; Gyurova, L. J. Chem. Soc., Faraday Trans. 1990, 86, 385.
M. V. Landau, E. Dafa, M. L. Kaliya, T. Sen, M. Herskowitz Microporous and Mesoporous Materials 2001, 49, 65
L. Langmuir, J. Amer. Chem. Soc. 38, 2221 (1916)
C. Li, G. Xiong, J. Liu, P. Ying, Q. Xin, Z. Feng, J. Phys. Chem. B 2001, 105,2993
Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285.
H. P. Lin, S. Cheng, and C. Y. Mou, Chem. Mater. 1998,10, 581.
H. P. Lin, Y. R. Cheng, and C. Y. Mou, Chem. Mater. 1998, 10, 3772.
Hong-Ping Lin, Shang-Bing Liu, Chung-Yuan Mou and Chih-Yuan Tang Chem. Commun., 1999, 583
Lin, H. P.; Yang, L. Y.; Mou, C. Y.; Liu, S. B.; Lee, H. K. New J.Chem. 2000, 24, 253. 8328.
H. P. Lin, Y. R. C. Y. Mou, Shanh-Bin Liu, Chi-Yuan Tang, Ching-Yen Lin Microporous and Mesoporous Materials. 2001, 44-45, 129
Lin HP, Kao CP, Mou CY MICROPOROUS AND MESOPOROUS MATERIALS 2001, 48, 135
H. P. Lin, P. C. Shih,C.Y. Mou, Chemistry Letters. 2002 in press
A. Lopez, M.H. Tuilier, J.L. Guth, L. Delmotte, J.M. Popa, J. Solid State
Luan, Z.; Kevan, L. J. Phys. Chem. B 1997, 101, 2020.
Ralph K. Iler Chemistry of silica John Wiley & Sons, Inc. (1979)
P.P. Knops-Gernits, D.E. De Vos, E.J.P Feijien, P.A. Jacobs, Microporous Mater. 1997, 8, 3.
Claus J.H. Jacobsen, Claus Madsen, Ton V.W. Janssens, Hans J. Jakobsen,J¢rgen Skibsted Microporous and Mesoporous Materials, 2000 39, 393
Lin, X. H.; Chuah, G. K.; Jaenicke, S. J. Mol. Catal. A-Chem. 1999, 150, 287.
Jaenicke, S.; Chuah, G. K.; Lin, X. H.; Hu, X. C. Microporous Mesoporous Mater. 2000, 35-36, 143
Jaroniec, C. P.; Kruk, M.; Jaroniec, M.; Sayari, A. J. Phys. Chem.B 1998, 102, 5503
Antochshuk, V.; Jaroniec, M. Chem. Commun. 1999, 2373. A. Chem. Commun. 1999, 1841
V. Antochshuk and M. Jaroniec, Chem. Mater., 2000, 12, 2496.
Jones, D. J.; Jimenez-Jimenez J.; Jimenez-Lopez, A.; MairelesTorres, P. Olivera-Pastor, P; Rodriguez-Castellon, E.; Rozieere, J. Chem. Commun. 1997, 431
R.Mokaya, W. Jones, Chem. Commun., 1997, 2185
Robert Mokaya and William Jones Phys. Chem. Chem. Phys., 1999, 1, 207
Robert Mokaya Chem. Commun., 2001, 633
L. Machese, E. Gianotti, V. Dellarocca, T. Maschmeyer, F. Rey, S. Coluccia, J. Thomas, Phys. Chem. Chem, Phys. 1999, 1, 585
Mark C. Burleigh, Michael A. Marowitz, Mark S. Spector, and Bruce P. Gaber J. Phys. Chem. B 2001, 105, 9935-9942
Jose´ M. Fraile, Joaquý´n Garcý´a, Jose´ A. Mayoral,* M. Grazia Proietti, and Marý´a C. Sa´nchez J. Phys. Chem. 1996, 100, 19484
Li, S.; Meitzner, G. D.; Iglesia, E. J. Phys. Chem. B 2001, 105, 5743.
Gavin Mountjoy, d avid M. Pickup, Ruth Anderson, Graham W. Wallidge, Mar K A. Holland, Robert J. Newport, Mark E. Smith Phys. Chem. CHem. Phys., 2000, 2, 2455
J. Nechtschein, Bull. Soc. Chim. Fri, 3(1), 913(1973)
S. O’Brien, J. Tudor, T. Masschmeyer, D. O’Hare, Chem. Commun. 1997, 1905
Gabriel C.Ossenkamp, Tim Kemmitt, Jim H. Johnston Chem. Mater. 2001, 13, 3975
MacLachlan, M. J.; Ginzburg, M.; Coombs, N.; Raju, N. P.; Greedan, J. E.; Ozin, G. A.; Manners, I. J. Am. Chem. Soc. 2000, 122, 3878
M. Padovan, G. Leofanti, P. RoYa, European Patent EP 0311983, 1989.
Pal, B.; Sharon, M. Thin Solid Films 2000, 379, 83
S. Pci, G.W. Zajac, J.A. Kadok, J. Faber, B.I. Boyanov,D. Duck, D. Fazzini, T.I. Morrison, D.S. Yang, Catal. Lett. 21 (1993) 333.
Perkas, N.; Wang, Y. Q.; Koltypin, Y.; Gedanken, A.; Chandrasekaran, S. Chem. Commun. 2001, 11, 988
J. A. Moreno, G. oncelet J. Cata. 2001, 203, 453
Wim M. Rhijn, Dirk E. Vos, Bert F. Sels, Wim D. Bossaert and Pierre A. Jacobs Chem. Commun., 1998 317
Ryong Ryoo, Sang Hoon Joo, Michal Kruk, Mietek Jaroniec Adv. Mater. 2001, 13, 9, 677
Abdelhamid Sayari, and Safia Hamoudi Chem. Mater. 2001, 13, 3151
R. Schmitt, D. Akporiaye, M. Stocker, O. H. Ellestand, Chem. Commun., 1994, 1493
K. Kosuge, P. Singh, Chemistry Letters, 9-10 (1999)
Wen-Hua Zhang, Jian-Lin Shi, Lian-Zhou Wang, Dong-Sheng Yan Materials Letters 2000, 46, 35
Blake J. Aronson, Christopher F. Blanford, and Andreas Stein, Chem. Mater. 1997, 9, 2842
Tolbert, S. H.; Sieger, P.; Stucky, G. D.; Aubin, S. M. J.; Wu, C. C.; Hendrickson, D. N. J. Am. Chem. Soc. 1997, 119, 8652
Walker, J. V.; Morey, M.; Carlsson, H.; Davidson, A.; Stucky, G. D.; Butler, A. J. Am. Chem. Soc. 1997, 119, 6921
M. S. Morey, G. D. Stucky, S. Schwarz, M. Fröba, J. Phys. Chem. B. 1999, 103, 2037
M. S. Morey, S. O’Brien, S. Schwarz, G. D. Stucky, Chem. Mater. 2000, 12, 898
Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B.F.; Stucky, G. D. Chem Mater. 2000, 12, 2448
M. Taramasso, G. Perego, B. Notari, US Patent No. 4 410 501, 1983.
Katsutoshi Yamamoto, Takashi Tatsumi Chemistry Letters 2000, 624
A. Thangaraj, R. Kumar, S.P. Mirajkar, P. Ratnasamy, J. Catal. 130 (1991) 1.
Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Nature 1995, 378, 159.
Leonardo Marchese, Enrica Gianotti, Valeria Dellarocca, Thomas Maschmeyer,Fernando Rey, Salvatore Coluccia and John M. Thomas, Phys. Chem. Chem. Phys., 1999, 1, 585
Tuel, A.; Gontier, S.; Teissier, R. J. Chem. Soc. Chem. Commun.1996, 651.
Wang, G.-R.; Wang, X.-Q.; Wang, X.-S.; Yu, S.-X. Stud. Surf. Sci.Catal. 1994, 83, 67.
"納米材料製備技製備技術"王世敏 許祖勳著, 2002年2月 化學工業出版中心 北京
P. Wu, M. Iwamoto, J. Chem. Soc., Faraday. Trans. 94 (1998) 2871
Yu Han, Feng-Shou Xiao, Shuo Wu, Yinyong Sun, Xiangju Meng, Dongsheng Li, and Sen Lin, J. Phys. Chem. B 2001, 105, 7963
Yinghong Yue, Antoine Gedeon, Jean-Luc Bonardet, Nick Melosh, Jean-Baptiste D’Espinose, Jacques Fraissard Chem. Commun., 1999, 1967
Lei Zhang, Georgia C. Papaefthymiou, and Jackie Y. Ying, J. Phys. Chem. B 2001, 105, 7414
X. S. Zhao, G. Q. Lu, G. Q. Millar, X. S. Li Cata. Lett. 1996, 38, 33
X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. Q. Millar, H. Y. Zhu J. Phys. Chem. B 1997, 101, 6525-6531
X. S. Zhao et. al. J. Phys. Chem. B 1998, 102, 1556-1561
Zhaohua Luan, Martin Hartmann, Dongyuan Zhao, Wuzong Zhou, Larry Kevan, Chem. Mater. 1999, 11, 1621
X. S. Zhao, G. Q. Lu, C. Song Chem. Commun., 2001, 2306

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top