|
1. D. J. Bergman and M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003). 2. M. I. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010). 3. T. H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960). 4. A. Einstein, On the quantum mechanics of radiation. Z. Phys. 18,121 (1917). 5. S. Haroche and D. Kleppner, Cavity quantum electrodynamics. Phys. Today B 42, 24 (1989). 6. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366 (1962). 7. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, Tunable nanowire nonlinear optical probe. Nature 447, 1098 (2007). 8. S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J. Am. Chem. Soc.125, 3322 (2003). 9. M. Loncar, A. Scherer, and Y. Qiu, Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648 (2003). 10. P. Alivisatos, The use of nanocrystals in biological detection. Nature Biotech. 22, 47 (2003). 11. R. W. Boyd and J. E. Heebner, Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742 (2001). 12. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17, 7790 (2009). 13. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia et al., Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220 (2009). 14. S. Strauf, F. Jahnke, Single quantum dot nanolaser. Laser Photon. Rev. 5, 607 (2011). 15. F. J. Garcia-Vidal and E. Moreno, Applied physics: Lasers go nano. Nature 461, 604 (2009). 16. M. Brongersma and V. Shalaev, The case for plasmonics. Science 328, 440 (2010). 17. H. A. Atwater, The promise of plasmonics. Scientific American 17, 56 (2007). 18. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496 (2008). 19. P. Nagpal, N. C. Lindquist, S.-H. Oh and D. J. Norris, Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594 (2009). 20. J.-S. Huang, et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Commun. 1, 150 (2010). 21. W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003). 22. S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005). 23. D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nature Photon. 4, 83 (2010). 24. J. A. Schuller et al., Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193 (2010). 25. M. T. Hill et al., Lasing in metallic-coated nanocavities. Nature Photon. 1, 589 (2007). 26. N. Niu, T-L Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity. Appl. Phys. Lett. 101, 161105 (2012). 27. J. R. Sambles, G. W. Bradbery and F. Z. Yang, Optical-excitation of surface-plasmons. Contemp. Phys. 32, 173 (1991). 28. S.A. Maier, Plasmonics fundamentals and applications (Springer, New York, 2007). 29. M. I. Stockman, Spasers explained. Nature Photon. 2, 327 (2008). 30. M. T. Hill et al., Lasing in metallic-coated nanocavities. Nature Photon. 1, 589 (2007). 31. M. P. Nezhad et al., Room-temperature subwavelength metallo-dielectric lasers. Nature Photon.4, 395 (2010). 32. M. A. Noginov et al., Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009). 33. R. F. Oulton et al., Plasmon lasers at deep subwavelength scale. Nature 461, 629 (2009). 34. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal and X. Zhang, Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110 (2011). 35. C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn and S. Gwo, Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. Nano Lett. 11, 4256 (2011). 36. D. Li and M. I. Stockman, Electric spaser in the extreme quantum limit. Phys. Rev. Lett. 110, 106803 (2013). 37. P. B. Johnson and R. W. Christy, Optical constants of the noble metals. Phys. Rev. B 9, 5056 (1974). 38. H. Yokohama, Physics and device applications of optical microcavities. Science 256, 66 (1992). 39. S. Noda, Seeking the ultimate nanolaser. Science 314, 260 (2006). 40. H. Altug, D. Englund, and J. Vučković, Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484 (2006). 41. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001). 42. C. Schneider et al., An electrically pumped polariton laser. Nature 497, 348 (2013). 43. S. H. Kwon et al., Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679 (2010). 44. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski and T. W. Odom, Plasmonic bowtie nanolaser arrays. Nano Lett. 12, 5769 (2012). 45. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 482, 204 (2012). 46. P. Ginzburg, and A. V. Zayats, Linewidth enhancement in spasers and plasmonic nanolasers. Opt. Express 21, 2147 (2013). 47. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon. 6, 459 (2012). 48. Birth of the nanolaser, Nature Photon. 3, 545 (2009). 49. A. V. Zayats and S. A. Maier, Active plasmonics and tuneable plasmonic metamaterials. (John Wiley & Sons, Inc., Hoboken, New Jersey. 2013) 50. P. R. West et al., Searching for better plasmonic materials. Laser Photon. Rev. 4, 795 (2010). 51. E. D. Palik, Handbook of Optical Constants of Solids [electronic resource] (Academic press, San Diego, 1998). 52. P. Berini and I. De Leon, Surface plasmon-polariton amplifiers and lasers. Nature Photon. 6, 16 (2012). 53. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco and A. Y. Cho, Single mode surface plasmonic laser. Appl. Phys. Lett. 76, 2164 (2000). 54. G. W. Bryant, F. J. G. de Abajo and J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631 (2008). 55. S. D. Brorson and H. A. Haus, Diffraction gratings and geometrical optics. J. Opt. Soc. Am. B 5, 247 (1998). 56. K. L. Shaklee, R. E. Nahory and R. F. Leheny, Optical gain in semiconductors. J. Lumin. 7, 284 (1973). 57. A. Y. Cho and J. R. Aethur, Molecular beam epitaxy. Jr. Prog. Solid State Chem. 10, 157 (1975). 58. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C-K. Shih and S. Gwo, Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450 (2012). 59. H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 89, 243105 (2006). 60. J. Müller et al., Gain analysis of blue nitride-based lasers by small signal modulation. Appl. Phys. Lett. 96, 131105 (2010). 61. Yu. A. Vlasov, K. Luterova, I. Pelant, B. Hönerlage and V. N. Astratov, Optical gain of CdS quantum dots embedded in 3D photonic crystals. Thin Solid Films 318, 93 (1998). 62. A. R. Smith, K.-J. Chao, Q. Niu and C. K. Shih, Formation of atomically flat silver films on GaAs with a "silver mean" quasi periodicity. Science 273, 226 (1996). 63. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George. Low-temperature Al203 atomic layer deposition. Chem. Mater. 16, 639 (2004). 64. C.-C. Hong, H. Ahn, C.-Y. Wu, and S. Gwo, Strong green photoluminescence from InxGa1-xN/GaN nanorod arrays, Opt. Express 17, 17227 (2009). 65. E. M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946). 66. M. Fox, Quantum optics - an introduction. (Oxford, 2006). 67. D. Dravins, Photonic astronomy and quantum optics. (Springer, 2007). 68. R. Hanbury Brown and R. Q. Twiss. A test of a new type of stellar interferometer on sirius. Nature 178 ,1046 (1956). 69. E. F. Schubert and J. K. Kim, Sold-state light sources getting small. Science 308, 1274 (2005). 70. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers and M. G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160 (2007). 71. H. Ohta, S. P. DenBaars and S. Nakamura, Future of group-III nitride semiconductor green laser diodes, J. Opt. Soc. Am. B 27, B45 (2010). 72. T. Mukai, M. Yamada and S. Nakamura, Characteristics of InGaN-based uv/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys. 38, 3976 (1999). 73. T. Xu, A. Yu. Nikiforov, R. France, C. Thomidis, A. Williams and T. D. Moustakas, Blue–green–red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy. Phys. Stat. Sol. A 204, 2098 (2007). 74. C. J. Humphreys, Solid-state lighting. MRS Bull. 33, 459 (2008). 75. X. Li, X. Ni, J. Lee, M. Wu, U. Ozgur, H. Morkoc, T. Paskova, G. Mulholland and K. R. Evans, Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes. Appl. Phys. Lett. 95, 121107 (2009). 76. J. Lee, X. Li, X. Ni, U. Ozgur, H. Morkoc, T. Paskova, G. Mulholland and K. R. Evans, On carrier spillover in c- and m-plane InGaN light emitting diodes. Appl. Phys. Lett. 95, 201113 (2009). 77. S.-P. Chang, T.-C. Lu, L.-F. Zhuo, C.-Y. Jang, D.-W. Lin, H.-C. Yang, H.-C. Kuo and S.-C. Wang, Low droop nonpolar GaN/InGaN light emitting diode grown on m-plane GaN substrate. J. Electrochem. Soc. 157, H501 (2010). 78. J. Wu et al., Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94, 6477 (2003). 79. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo and P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phy. Rev. B 60, 8849 (1999). 80. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000). 81. H. Masui, S. Nakamura, S. P. DenBaars and U. K. Mishra, Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Trans. Electron Devices 57, 88 (2010). 82. H.-W. Lin, Y.-J. Lu, H.-Y. Chen H.-M. Lee, and S. Gwo. InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010). 83. T. Onuma, K. Okatomo, H. Ohta, and S. F. Chichibu, Anisotropic optical gain in m-plane InxGa1−xN/GaN multiple quantum well laser diode wafers fabricated on the low defect density freestanding GaN substrates. Appl. Phys. Lett. 93, 091112 (2008). 84. A. Tyagi, R. M. Farrell1, K. M. Kelchner, C. Y. Huang, P. S. Hsu, D. A. Haeger, M. T. Hardy, C. Holder, K. Fujito, D. A. Cohen, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar [20–21] GaN substrates. Appl. Phys. Express 3, 011002 (2010). 85. F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287 (2005). 86. C. Yang, Z. Zhong, and C. M. Lieber, Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304 (2005). 87. E. D. Minot, F. Kelkensberg, M. van Kouwen, J. A. van Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgström, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, Single Quantum Dot Nanowire LEDs. Nano Lett. 7, 367 (2007). 88. H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4, 1059 (2004). 89. L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 82, 1601 (2003). 90. C.-T. Kuo, K.-K. Chang, H.-W. Shiu, C.-R. Liu, L.-Y. Chang, C.-H. Chen and S. Gwo, Natural band alignments of InN/GaN/AlN nanorod heterojunctions. Appl. Phys. Lett. 99, 122101 (2011). 91. M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides. Rep. Prog. Phys.72, 036502 (2009). 92. S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956 (1998). 93. S. Nakamura and S. F. Chichibu, Introduction to nitride semiconductor blue lasers and light emitting diodes. (Taylor &Francis, London, 2000). 94. Y. S. Lu, C. L. Ho, J. A. Yeh, H. W. Lin and S. Gwo, Anion detection using ultrathin InN ion selective field effect transistors. Appl. Phys. Lett. 92, 212102 (2008). 95. H.-Y. Chen, Y.-C. Yang, H.-W. Lin, S.-C. Chang, and S. Gwo, Polarized photoluminescence from single GaN nanorods: Effects of optical confinement Opt. Express 16, 13465 (2008). 96. M. T. Hill, Status and prospects for metallic and plasmonic nano-lasers. J. Opt. Soc. Am. B 27, B36 (2011). 97. K. J. Vahala, Optical microcavities. Nature 424, 839 (2003). 98. O. Painter et al., Two-dimensional photonic band-gap defect mode laser. Science 284, 1819 (1999). 99. A. Tandaechanurat et al., Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photon. 5, 91 (2011). 100. H. Yu et al., Quantitative determination of the metastability of flat Ag overlayers on GaAs(110). Phys. Rev. Lett. 88, 016102 (2002). 101. Y.-J. Lu, H.-W. Lin, H.-Y. Chen, Y.-C. Yang and S. Gwo, Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources. Appl. Phys. Lett. 98, 233101 (2011). 102. J. D. Jackson, Classical electrodynamics, (Wiley, New York, ed. 3, 1999), chap. 9. 103. H. Wei and H. Eilers, From silver nanoparticles to thin films: Evolution of microstructure and electrical conduction on glass substrates. J. Phys. Chem. Sol. 70, 459 (2009). 104. V. J. Logeeswaran et al., Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 9, 178 (2009). 105. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits. (Wiley, New York, 1995). 106. K. Nozaki, S. Kita, and T. Baba, Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506 (2007). 107. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis and V. A. Fedotov, Lasing spaser. Nature Photon. 2, 351 (2008). 108. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft and M. P. van Exter, Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013). 109. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan and A. Nurmikko, Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335 (2012). 110. M. C. Gather, K. Meerholz, N. Danz and K. Leosson, Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon. 4, 457 (2010). 111. S. Nakamura, S. Pearton and G. Fasol, The blue laser diode, 2nd Ed. (Springer-Verlag, Berlin, 2000). 112. C. Z. Ning, Semiconductor nanolasers. Phys. Status Solidi B 247, 774 (2010). 113. Y.-J. Lu, M.-Y. Lu, Y.-C. Yang, H.-Y. Chen, L.-J. Chen and S. Gwo, Dynamic visualization of axial p–n junctions in single gallium nitride nanorods under electrical bias. ACS nano (accepted, 2013). 114. X. Duan, Y. Huang, R. Agarwal and C. M. Lieber, Single-nanowire electrically driven lasers. Nature 421, 241 (2003). 115. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong and S. T. Lee, Small-diameter silicon nanowire surfaces. Science 299, 1874 (2003). 116. P. Yang, R. Yan and M. Fardy, Semiconductor nanowire: What’s next? Nano Lett. 10, 1529 (2010). 117. H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen and C. M. Lieber, Programmable nanowire circuits for nanoprocessors. Nature 470, 240 (2011). 118. X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen and Z. L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767 (2009). 119. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells. Nature Mater. 4, 455 (2005). 120. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007). 121. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang and C.-S. Lee, Arrays of ZnO/ZnxCd1–xSe nanocables: Band gap engineering and photovoltaic applications. Nano Lett. 11, 4138 (2011). 122. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001). 123. L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Qu, Y. Huang and X. Duan, Sub-100 nm channel length graphene transistors. Nano Lett. 10, 3952 (2010). 124. K. Storm, G. Nylund, L. Samuelson and A. P. Micolich, Realizing lateral wrap-gated nanowire FETs: Controlling gate length with chemistry rather than lithography. Nano Lett. 12, 1 (2012). 125. Y. Huang, X. Duan, Y. Cui and C. M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002). 126. F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet and C. M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975 (2004). 127. Y. Dong, B. Tian, T. J. Kempa and C. M. Lieber, Coaxial group III−nitride nanowire photovoltaics. Nano Lett. 9, 2183 (2009). 128. S. K. Lim, S. Crawford, G. Haberfehlner and S. Gradečak, Controlled modulation of diameter and composition along individual III–V nitride nanowires. Nano Lett. 13, 331 (2013). 129. S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov and S. H. Christiansen, Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9, 1341 (2009). 130. T. Kuykendall, P. Ulrich, S. Aloni and P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951 (2007). 131. A. C. Twitchett-Harrison, T. J. V. Yates, S. B. Newcomb, R. E. Dunin-Borkowski and P. A. Midgley, High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett. 7, 2020 (2007). 132. P. A. Midgley and R. E. Dunin-Borkowski, Electron tomography and holography in materials science. Nature Mater. 8, 271 (2009). 133. T. H. P. Chang and W. C. Nixon, Electron beam induced potential contrast on unbiased planar transistors. Solid-State Electron. 10, 701 (1967). 134. D. D. Perovic, M. R. Castell, A. Howie, C. Lavoie, T. Tiedje and J. S. W. Cole, Field-emission SEM imaging of compositional and doping layer semiconductor superlattices. Ultramicroscopy 58, 104 (1995). 135. D. Venables, H. Jain and D. C. Collins, Secondary electron imaging as a two-dimensional dopant profiling technique: review and update. J. Vac. Sci. Technol. B 16, 362 (1998). 136. C. P. Sealy, M. R. Castell and P. R. Wilshaw, Mechanism for secondary electron dopant contrast in the SEM. J. Electron. Microsc. 49, 311 (2000). 137. S. L. Elliott, R. F. Broom and C. J. Humphreys, Dopant profiling with the scanning electron microscope—A study of Si. J. Appl. Phys. 91, 9116 (2002). 138. B. Kaestner, C. Schönjahn and C. J. Humphreys, Mapping the potential within a nanoscale undoped GaAs region using a scanning electron microscope. Appl. Phys. Lett. 84, 2109 (2004). 139. D. Tsurumi, K. Hamada and Y. Kawasaki, Energy-filtered imaging in a scanning electron microscope for dopant contrast in InP. J. Electron. Microsc. 59, S183 (2010). 140. J. Jatzkowski, M. Simon-Najasek and F. Altmann, Novel techniques for dopant contrast analysis on real IC structures. Microelec. Reliab. 52, 2098 (2012). 141. A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, P. Kaszuba and C. Daghlian, Two‐dimensional surface dopant profiling in silicon using scanning kelvin probe microscopy. J. Appl. Phys. 77, 1888 (1995). 142. S. Yoshida, Y. Kanitani, R. Oshima, Y. Okada, O. Takeuchi and H. Shigekawa, Microscopic basis for the mechanism of carrier dynamics in an operating p-n junction examined by using light-modulated scanning tunneling spectroscopy. Phys. Rev. Lett. 98, 026802 (2007). 143. C.-T. Kuo, H.-M. Lee, H.-W. Shiu, C.-H. Chen and S. Gwo, Direct imaging of GaN p-n junction by cross-sectional scanning photoelectron microscopy and spectroscopy. Appl. Phys. Lett. 94, 122110 (2009). 144. E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor and P. Yang, Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nature Nanotech. 4, 311 (2009). 145. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa and E. Abe, Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mater. 10, 278 (2011). 146. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica and H. Lüth, Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 5, 981 (2005). 147. G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M. A. Reed, G. Wang, D. Moses and J. Zhang, Current rectification in a single GaN nanowire with a well-defined p–n junction. Appl. Phys. Lett. 83, 1578 (2003). 148. P. Deb, H. Kim, Y. Qin, R. Lahiji, M. Oliver, R. Reifenberger and T. Sands, GaN nanorod schottky and p−n junction diodes. Nano Lett. 6, 2893 (2006). 149. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars and U. K. Mishra, Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998). 150. Y. S. Park, C. M. Park, C. J. Park, H. Y. Cho, S. J. Lee, T. W. Kang, S. H. Lee, J. E. Oh, K. H. Yoo and M. S. Son, Electron trap level in a GaN nanorod p-n junction grown by molecular-beam epitaxy. Appl. Phys. Lett. 88, 192104 (2006). 151. A. Motayed, A. V. Davydov, M. D. Vaudin, I. Levin, J. Melngailis and S. N. Mohammad, Fabrication of GaN-based nanoscale device structures utilizing focused ion beam induced Pt deposition. J. Appl. Phys. 100, 024306 (2006). 152. L. T. Romano, M. Kneissl, J. E. Northrup, C. G. Van de Walle and D. W. Treat, Influence of microstructure on the carrier concentration of Mg-doped GaN films. Appl. Phys. Lett. 79, 2734 (2001). 153. X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001). 154. E. Betzig and J. K. Trautman, Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189 (1992). 155. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006). 156. G. J. Leggett, Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35, 1150 (2006). 157. F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim and C. A. Mirkin, Beam pen lithography. Nature Nanotech. 5, 637 (2010). 158. K. Lieberman, S. Harush, A. Lewis and R. Kopelman, A light source smaller than the optical wavelength. Science 247, 59 (1990). 159. J. Michaelis, C. Hettich, J. Mlynek and V. Sandoghdar, Optical microscopy using a single-molecule light source. Nature 405, 325 (2000). 160. Y. Zhao, K. H. An, S. Chen, B. O’Connor, K. P. Pipe, and M. Shtein, Localized current injection and submicron organic light-emitting device on a pyramidal atomic force microscopy tip. Nano Lett. 7, 3645 (2007). 161. J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett and D. G. Lidzey, Optical nanolithography using a scanning near-field probe with an integrated light source. Appl. Phys. Lett. 93, 213103 (2008). 162. K. Hoshino, A. Gopal and X. Zhang, Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip. IEEE J. Sel. Top. Quantum Electron. 15, 1393 (2009). 163. K. Kishino, A. Kikuchi, H. Sekiguchi and S. Ishizawa, InGaN/GaN nanocolumn LEDs emitting from blue to red. Proc. SPIE 6473, 64730T (2007). 164. J. T. Fourkas, Nanoscale Photolithography with Visible Light. J. Phys. Chem. Lett. 1, 1221 (2010). 165. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin and H. Park, Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475 (2009). 166. R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger and X. Zhang, Multiplexed and electrically modulated plasmon laser circuit. Nano Lett. 12, 5396 (2012). 167. Y.-S. No, J.-H. Choi, H.-S. Ee, M.-S. Hwang, K.-Y. Jeong, E.-K. Lee, M.-K. Seo, S.-H. Kwon and H.-G. Park, A Double-strip plasmonic waveguide coupled to an electrically driven nanowire LED. Nano Lett. 13, 772 (2013).
|