網頁參考
[1] 行政院主計總處。http://www.stat.gov.tw/mp.asp?mp=4。
[2] 台灣內政部不動產交易實價查詢服務網。
http://lvr.land.moi.gov.tw/N11/homePage.action。
[3] 國家發展委員會。http://data.gov.tw/。
中文參考
[4] 林英彥 (2004)。不動產估價 (10版)。文笙書局。[5] 蕭代基,鄭蕙燕,吳珮瑛,錢玉蘭,溫麗琪 (2003)。環境保護之成本效益分析:理論、方法與應用。俊傑書局。
[6] 龔永香 (2007)。客觀標準化不動產估價之可行性分析─市場比較法應用於大量估價。國立政治大學地政研究所碩士論文。[7] 林建亨 (2008)。南科對房地產價格之影響-特徵價格法之應用。國立成功大學都市計劃學系研究所碩士論文。[8] 何信德 (2008)。不動產估價成本法中建築物折舊因素之探討-以台中地區為例。逢甲大學土地管理所碩士論文。[9] 劉玉婷 (2009)。應用迴歸分析及類神經網路建構不動產估價模式-以台中市住宅為例。雲林科技大學營建工程系碩士論文。[10] 黃聖智 (2010)。不動產估價模式之研究-以地產為例。高苑科技大學土木工程研究所碩士論文。[11] 簡淑芬 (2012)。不動產估價模型之研究-以臺中市為例。逢甲大學土地管理所財稅所碩士論文。[12] 陳靖閔 (2009)。應用多種預測方法於台北市房地產價格預測。明志科技大學工業工程與管理研究所。
[13] 許胤捷 (2012)。大台北房地產價格預測之研究。明志科技大學工業工程與管理研究所。
[14] 陳俊麟 (2013)。運用支撐向量機預測台北市住宅價格。國立屏東商業技術學院不動產經營系碩士論文。[15] 李則維 (2014)。類神經網路方法於台北市中古屋大廈房價估計及比較。明志科技大學工業工程與管理研究所。
[16] 吳智鴻 (2003)。結合基因演算法最佳化「支持向量機」參數∼財務危機上之應用。國立臺北大學企業管理學系博士論文。[17] 蔡爾逸 (2012)。應用支撐向量機(SVM)於都市不動產價格預測之研究。國立中央大學營建管理研究所碩士論文。[18] 黃瀞萱 (2014)。支援向量迴歸結合真實波動分類預測股票指數。臺北市立大學資訊科學系碩士班碩士論文。[19] 魏如龍 (2003)。類神經網路於不動產價格預估效果之研究。國立政治大學地政系碩士論文。[20] 唐東暘,朱正忠,黃建華 (2013)。支援多重服務品質考量的教育雲服務選擇使用基因演算法。TANET2013臺灣網際網路研討會。
[21] 陳奉瑤,楊依蓁 (2007)。個別估價與大量估價之準確性分析。住宅學報,第16卷第2期,第67-84頁。英文參考
[22] R. J. Gordon (1997). The time-varying NAIRU and its implications for economic policy, Journal of Economic Perspectives, vol. 11, no. 1, pp. 11-32.
[23] P. F. Chen, M. S. Chien, C.C. Lee (2011). Dynamic modeling of regional house price diffusion in Taiwan. Journal of Housing Economics, vol. 20, pp. 315-332.
[24] K. A. Kiel, J. E. Zabel (2008). Location, location, location: the 3L approach to house price determination. Journal of Housing Economics, vol. 17: pp. 175-190.
[25] J. Gu, M. Zhu, L. Jiang (2011). Housing price forecasting based on genetic algorithm and support vector machine. Expert Systems with Applications, vol. 38, no. 4, pp. 3383–3386.
[26] V. Plakandaras, R. Gupta, P. Gogas, T. Papadimitriou (2015). Forecasting the U.S. real house price index. Economic Modelling. vol. 45, pp. 259–267.
[27] S. Rosen (1974). Hedonic prices and implicit markets: product differentiation in pure competition. The Journal of Political Economy. vol. 82, no. 1, pp. 34-55.
[28] C. Cortes, V. Vapnik (1995). Support-vector networks. Machine Leaming. vol. 20, pp. 273-297.
[29] V. Vapnik, S. E. Golowich, A. Smola (1997). Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information Processing System. vol. 9, pp. 281-287.
[30] D. Li, W. Xu, H. Zhao, R. Chen (2009). A svr based forecasting approach for real estate price prediction. Proceedings of the Eighth International Conference on Machine Learning and Cybernetics. vol. 2, pp. 970-974.
[31] C. H. Wu, C. H Li, I. C. Fang, C. C. Hsu, W. T. Lin, C. H. Wu (2009). Hybrid genetic-based support vector regression with Feng Shui theory for appraising real estate price. 2009 First Asian Conference on Intelligent Information and Database Systems. pp. 295-300.
[32] Z. Yi, Z. Chunguang, H. Lan, W. Yan, Y. Bin (2009). Support vector regression for prediction of housing values. 2009 International Conference on Computational Intelligence and Security. vol. 2, pp. 61-65.
[33] J. H. Holland (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press.
[34] D. Whitley (1994). A genetic algorithm tutorial. Statistics and Computing. vol. 4, pp. 65-85.
[35] R. Choudhry, K. Garg (2008). A hybrid machine learning system for stock market forecasting. World Academy of Science, Engineering and Technology. vol. 15, pp. 315-318.
[36] E. I. Altman (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance. vol. 23, no. 4, pp. 589-609.
[37] A. J. Smola, B. Schölkopf (2004). A tutorial on support vector regression. Statistics and computing. vol. 14, no. 3, pp. 199-222.
[38] S. Chen, K. Jeong, W. K. Härdle (2008). Support vector regression based GARCH model with application to forecasting volatility of financial returns. SFB 649 Discussion Paper.
[39] M. A. Aizerman, È. M. Braverman, L. I. Rozonoèr (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control. vol. 25, pp. 821-837.
[40] C. W. Hsu, C. C. Chang, C. J. Lin (2003). A practical guide to support vector classification. Department of Computer Science National Taiwan University.
[41] K. Duan, S. S. Keerthi, A. N. Poo (2003). Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing. vol. 51, pp. 41-59.
[42] J. E. Baker (1987). Adaptive selection methods for genetic algorithms. Proceedings of the Second International Conference on Genetic Algorithms. pp. 100-111.
[43] D. E. Goldberg, J. H. Holland (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co.
[44] G. Capi, S. Kaneko, K. Mitobe, L. Barolli, Y. Nasu (2002). Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms. Robotics and Autonomous Systems. no. 38, pp. 119-128.
[45] G. Matysiak, P. Wang (1995). Commercial property market prices and valuations: analysing the correspondence. Journal of Property Research. vol. 12, no. 3, pp. 181-202.