|
1. Chen C.H., Yang, S.W., and Shen, Y.C., 1995. New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. Journal of Natural Products 58, 1655-1661. 2. Cherng, I.H., Wu, D.P., and Chiang, H.C., 1996. Triterpenoids from Antrodia cinnamomea. Phytochemistry 41, 263-267. 3. Cherng, I.H., and Chiang H.C., 1995. Three new triterpenoids from Antrodia cinnamomea. Journal of Natural Products 58, 365-371. 4. Chiang, H.C., Wu, D.P., Cherng I.W., and Ueng, C.H., 1995. A sesquitterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea. Phytochemistry 39, 613-616 5. Yang S.W., Shen, Y.C., and Chen, C.H., 1996. Steroids and triterpenoids of Antrodia cinnamomea a fungus parasitic on Cinnamomum micranthum. Phytochemistry 41, 1389-1392. 6. Wu S.H., Ryvarden, L., and Chang, T.T., 1997. Antrodia camphorata (’niu-chang-chih’), new combination of medicinal fungus in Taiwan. Botanical Bulletin of Academia Sinica 38, 273-275. 7. Peng, C.C., Chen, K.C., Peng, R.Y,, Su, C.H., and Hsieh-Li, H.M., 2006. Human urinary bladder cancer T24 cells are susceptible to the Antrodia camphorata extracts. Cancer Letters 243, 109-119. 8. Peng, C.C., Chen, K.C., Peng, R.Y,,Chyau, C.C., and Hsieh-Li, H.M., 2007. Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells. Journal of Ethnopharmacology 109, 93-103. 9. Song, T.Y., Hsu, S.L., and Yen, G.C., 2005a. Induction of apoptosis in human hepatoma cells by mycelia of Antrodia camphorata in submerged culture. Journal of Ethnopharmacology 100, 158-167. 10. Song, T.Y., Hsu, S.L., Yeh, C.T., and Yen, G.C., 2005b. Mycelia from Antrodia camphorata in Submerged culture induce apoptosis of human ,hepatoma HepG2 cells possibly through regulation of Fas pathway. Journal of Agricultural and Food Chemistry 53, 5559-5564. 11. Hsu, Y.L., Kuo, Y.C., Kuo, P.L., Ng, L.T., Kuo, Y.H., and Lin, C.C., 2005. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Letters 221, 77-89. 12. Hsu, Y.L., Kuo, P.L., Cho, C.Y., Ni, W.C., Tzeng, T.F., Ng, L.T., Kuo, Y.H., and Lin, C.C., 2007. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway. Food and Chemical Toxicology 45, 1249-1257. 13. Kuo, P.L., Hsu, Y.L., Cho, C.Y., Ng, L.T., Kuo, Y.H., and Lin, C.C., 2006. Apoptotic effects of Antrodia cinnamomea fruiting bodies extract are mediated through calcium and calpain-dependent pathways in Hep 3B cells. Food and Chemical Toxicology 44, 1316-1326. 14. Hseu, Y.C., Yang, H.L., Lai, Y.C., Lin, J.G., Chen, G.W., and Chang, Y.H., 2004. Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutrition and Cancer 48, 189-197. 15. Hseu, Y.C., Chen, S.C., Tsai, P.C., Chen, C.S., Lu, F.J, Chang, N.W., and Yang, H.L., 2007. Inhibition of cyclooxygenase-2 and induction of apoptosis in strogen-nonresponsive breast cancer cells by Antrodia camphorata. Food and Chemical Toxicology 45, 1107-1115. 16. Hseu, Y.C., Chen, S.C., Chen, H.C., Liao, J.W., and Yang, H.L., 2008. Antrodia camphorata inhibits proliferation of human breast cancer cells in vitro and in vivo. Food and Chemical Toxicology 46, 2680-2688. 17. Yang, H.L., Chen, C.S., Chang, W.H., Lu, F.J., Lai, Y.C., Chen, C.C., Hseu, T.H., Kuo, C.T., and Hseu, Y.C., 2006. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Letters 231, 215-227. 18. Lu, M,C., Du, Y.C., Chuu, J.J., Hwang, S.L., Hsieh, P.C., Hung, C.S., Chang, F.R., and Wu, Y.C., 2009. Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A. Archives of Toxicology 83, 121-129. 19. Song, T.Y., and Yen, G.C., 2002. Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry 50, 3322-3327. 20. Song, T.Y., and Yen, G.C., 2003. Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. Journal of Agricultural and Food Chemistry 51, 1571-1577. 21. Hseu, Y.C., Chang, W.C., Hseu, Y.T., Lee, C.Y., Yech, Y.J., Chen, P.C., Chen, J.Y., and Yang, H.L., 2002. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sciences 71, 469-482. 22. Hseu, Y.C., Wu, F.Y., Wu, J.J., Chen, J.Y., Chang, W.H., Lu, F.J, Lai, Y.C., and Yang, H.L., 2005. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. International Immunopharmacology 5, 1914-1925. 23. Shen, Y.C., Wang, Y.H., Chou, Y.C., Chen, C.F., Lin, L.C., Chang, T.T., Tien, J.H., and Chou, C.J., 2004. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Medica 70, 310-314. 24. Nakamura, N., Hirakawa, A., Gao, J.J., Kakuda, H., Shiro, M., Komatsu, Y., Sheu, C.C., and Hattori, M., 2004. Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. Journal of Natural Products 67, 46-48. 25. Yeh, C.T., Rao, Y.K., Yao, C.J, Yeh, C.F., Li, C.H., Chuang, S.E., Luong, J.H., Lai, G.M., and Tzeng, Y.M., 2009. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Letters 285, 73-79. 26. Wu, H., Pan, C.L., Yao, Y.C., Chang, S.S., Li, S.L., and Wu, T.F., 2006. Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell. Proteomics 6, 826-835. 27. Burz, C., Ioana, B.-N., Balacescu, O., and Irimie, A., 2009. Apoptosis in cancer:Key molecular singnaling pathways and therapy targets. Acta Oncologica. 48, 811-821. 28. McBride H.M., Neuspiel, M., and Wasiak, S., 2006. Mitochondria:more than just a powerhouse. Current biology 16, 551-560 29. Adams, J.M., 2004. Ways of dying:multiple pathways to apoptosis. Genes & development 17, 2481-2495. 30. Smaili, S.S., Hsu, Y.-T., Carvalho, A.C.P., Rosenstock, T.R., Sharpe, J.C., and Youle, R.J., 2003. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Brazilian Journal of Medical and Biological Research 36, 183-170. 31. Zamzami, N., Marchetti, p., Castedo, M., Zanin, C., Vayssiere, J.L., Petit, P.X., and Kroemer, G., 1995. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. Journal of experimental medicine 181, 1661-1672. 32. Green, D.R., and Evan, G.I., 2002. A matter of life and death. Cancer Cell 1, 19-30. 33. Jeong, S.-Y., and Seol, D.-W., 2008. The role of mitochondria in apoptosis. BMB reports 41(1), 11-22. 34. Kelekar, A., and Thompson, C.B., 1998. Bcl-2 family proteins:the role of the BH3 domain in apoptosis. Trends in cell biology 8, 324-330. 35. Harris, M.H., and Thompson, C.B., 2000. The role of the Bcl-2 family in the regulation of outer mitochondria membrane permeability. Cell death and differentiation 7, 1182-1191. 36. Adams, J.M., and Cory, S., 2001. Life-or-death decisions by the Bcl-2 protein family. Trends in biochemical sciences 26, 61-66. 37. Kuwana, T., and Bouchier-Hayes, L., 2005. BH3 Domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Molecular cell 17, 525-535. 38. Nechushtan, A., Smith, C.L., Lamensdorf, I., Yoon, S.H., and Youle, R.J., 2001. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. Journal of cell biology 153, 1265-1276. 39. Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X., 1996. Induction of apoptotic program in cell-free extracts:requirement for dATP and cytochrome c. Cell 86, 147-157. 40. Scorrano, L., and Korsmeyer, S.J., 2003. Mechanisms of cytochrome c release by proapoptotic Bcl-2 family members. Biochem Biophys Res Commun 304, 437-444. 41. Suliman, A., Lam, A., Datta, R., and Srivastava, R.K., 2001. Intracellular mechanisms of TRAIL:Apoptosis through mitochondrial-dependent and independent pathways. Oncogene 20, 2122-2133. 42. Ashkenazi, A., and Dixit, V.M., 1998. Death receptor:Signaling and modulation. Science 281, 1305-1308. 43. Hengartner, M.O., 2000. The Biochemistry of apoptosis. Nature 407, 770-776. 44. Chinnaiyan, A.M., O,Rourke, K., Tewari, M., and Dixit, V.M., 1995. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512. 45. Nagata, S., 1997. Apoptosis by death factor. Cell 88, 355-365. 46. Hsu, H., Shu, H.B., Pan, M.G., and Goeddel, D.V., 1996. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308. 47. Ding, W.X., and Yin, X.M., 2004. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. Journal of cellular and molecular medicine 8, 445-454. 48. Michean, O., and Tschopp, J., 2003. Induction of TNF receptor 1-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190. 49. Wullaert, A., Heyninck, K., and Beyaert, R., 2006. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol 72, 1090-1101. 50. Li, H., Zhu, H., Xu, C.J., and Yuan, J., 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. 51. Rao, R.V., Ellerby, H.M. and Bredesen, D.E., 2001. Coupling endoplasmic reticulum stress to the cell death program. Cell Death and Differentiation 11, 372-380. 52. Rao, R.V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L.M., Ellerby, H.M. and Bredesen, D.E., 2001. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. Journal of Biological Chemistry 276, 33869-33874. 53. Nakagawa, T. and Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. Journal of cell biology 150, 887-894. 54. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan, Y., 2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103. 55. Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M. and Shore, G.C., 2003. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618. 56. Nutt, L.K., Chandra, J., Pataer, A., Fang, B., Roth, J.A., Swisher, S.G., O,Neil R.G. and McConkey, D.J., 2002. Bax-mediated Ca2+ mobilization promotes cytochorome c release during apoptosis. Journal of biological chemistry 277, 20301-20308. 57. Nutt, L.K., Pataer, A., Pahler, J., Fang, B., Roth, J., McConkey, D.J. and Swisher, S.G., 2002. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. Journal of biological chemistry 277, 9219-9225. 58. Camby, I., Mercier, M.L., Lefranc, F., and Kiss, R., 2006. Galectin-1:a small protein with major functions. Glycobiology 16,137-157. 59. Belanis, L., Plowman, S.J., Rotblat, B., Hancock, J.F., and Kloog, Y., 2008. Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. Molecular Biology of the Cell. 19, 1404-1414. 60. Elad-Sfadia, G., Haklai, R., Ballan, E., Gabius, H.-J., and Kloog, Y., 2002. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. Journal of Biological Chemistry 277, 37169-37175. 61. Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E., and Kloog, Y., 2001. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486-7493. 62. Yamaoka, K., Mishima, K., Nagashima, T., Asai, A., Sanai, Y., and Kirino, T., 2000. Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of glioma cells. Journal of Neurosci Res 59, 722-730. 63. Kopitz, J., von Reitzenstein, C., Andre, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., and Gabius, H.J., 2001. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. Journal of Biological Chemistry 276, 35917-35923. 64. Rabinovich, G.A., 2005. Galectin-1 as a potential cancer target. British Journal of Cancer 92, 1188-1192. 65. Tinari, N., Kuwabara, I., Huflejt, M.E., Shen, P.F., Iacobelli, S., and Liu, F.T., 2001. Glycoprotein, 90K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation. International journal of cancer 91,167-172. 66. Clausse, N., van den Brule, F., Waltregny, D., Garnier, F., and Castronovo, V., 1999. Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion. Angiogenesis 3, 317-325. 67. Rabinovich, G.A., Iglesias, M.M., Castagna, L.F., Wolfenstein-Todel, C., Riera, C.M., and Sotomayor, C.E., 1998. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells:biochemical and functional characterization. Journal of Immunol 160, 4831-4840. 68. Matarrese, P., Tinari, A., Mormone, E., Bianco, G.A., Toscano, M.A., Ascione, B., Rabinovich, G.A., and Malorni, W., 2005. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding and fission. Journal of Biological Chemistry 280, 6969-6985. 69. Ghosh, P.M., Bedolla, R., Mokhailova, M., and Kreisberg, J.I., 2002. RhoA-dependent murine prostate cancer cell proliferation and apoptosis:role of protein kinase C. Cancer Research 62, 2630-2632. 70. Bishop, A.L., and Hall, A., 2002. Rho GTPases and their effector proteins. Biochemical journal 348, 241-255. 71. Hall, A., 1998. Rho GTPases and the actin cytoskeleton. Science 279, 509-514. 72. DerMardirossian, C., and Bokoch, G.M., 2005. GDIs:central regulatory molecules in Rho GTPase activation. Trends in Cell Biology 15, 356-363. 73. Jones, M.B., Krutzsch, H., Shu, H., Zhao, Y., Liotta, L.A., Kohn, E.C., and Petricoin, E.F., 2002. Proteomics analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002, 76-84. 74. Hondermarck, H., Vercoutter-Edouart, A.S., Revillion, F., Lemoine, J., el-Yazidi-Belkoura, I., Nurcombe, V., and Peyrat, J.P., 2001. Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics 1, 1216-1232. 75. Fritz, G., Brachetti, F., Schmidt, M., and Kaina, B., 2002. Rho GTPases in human breast tumours:expression and mutation analyses and correlation with clinical parameters. British journal of cancer 87, 635-644. 76. Fritz, G., Just, I., and Kaina, B., 1999. Rho GTPases are overexpressed in human tumors. International journal of cancer 81, 682-687. 77. Zhang, B., Zhang, Y., Dagher, M.-C., and Shacter, E., 2005. RhoGDP dissociation inhibitor protects cancers cells against drug-induced apoptosis. Cancer Research 65, 6054-6062. 78. MacKeigan, J.P., Clements, C.M., Lich, J.D., Pope, R.M., Hod, Y., and Ting, J.P., 2003. Proteomic profiling drug-induced apoptosis in non-small cell lung carcinoma: identification of RS/DJ-1 and RhoGDIalpha. Cancer Research 63, 6928-6934. 79. Park, Y.J., Ahn, H.J., Chang, H.K., Kim, J.Y., Huh, K.H., Kim, M.S., and Kim, Y.S., 2009. The RhoGDI-alpha/JNK signaling pathway plays a significant role in mycophenolic acid-induced apoptosis in an insulin-secreting cell line. Cell Signal 21, 356-364. 80. Perrin, B.J., and Huttenlocher, A., 2002. Molecules in focus:Calpain. International Journal of Biochemistry & Cell Biology 34, 722-725. 81. Carragher, N.O., and Frame, M.C., 2002. Calpain:a role in cell transformation and migration. International Journal of Biochemistry & Cell Biology 34, 1539-1543. 82. Franco, S.J., and Huttenlocher, A., 2005. Regulating cell migration:calpains make the cut. Journal of Cell Science 118, 3829-3838. 83. Kar, P., Samanta, K., Shaikh, S., Chowdhury, A., Chakraborti, T., and Chakraborti, S., 2010. Mitochondrial calpain system:An overview. Archives of Biochemistry and Biophysics 495, 1-7. 84. Carragher, N.O., Levkau, B., Ross, R., and Raines E.W., 1999. Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp125 (FAK), paxillin and talin. Journal of Cell Biology 7, 619-630. 85. Carragher, N.O., Fincham, V.J., Riley, D., and Frame, M.C., 2001. Cleavage of focal adhesion kinase by different proteases during SRC- regulated transformation. Journal of Biological Chemistry 276, 4270-4275. 86. lading, A., Chang, P., Lauffenburger, D.A., and Wells, A., 2000. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. Journal of Biological Chemistry 275, 2390-2398. 87. Huttenlocher, A., Palecek, S.P., Lu, Q., Zhang, W., Mellgren, R.L., Lauffenburger, D.A., Ginsberg, M.H., and Horwitz, A.F., 1997. Regulation of cell migration by the calcium-dependent protease calpain. Journal of Biological Chemistry 272, 32719-32722. 88. Bevers, M.B., and Neumar, R.W., 2008. Mechanistic role of calpains in postischemic neurodegeneration. Journal of Cerebral Blood Flow & Metabolism 28, 655-673. 89. Hershey, J.W., Smit-McBride, Z., and Schnier, J., 1990. The role of mammalian initiation factor eIF4D and its hypusine modification in translation. Biochimica et biophysica acta 1050, 160-162. 90. Park, M.H., Wolff, E.C., and Folk, J.E., 1993. Hypusine:its post-translational formation in eukaryotic translation initiation factor 5A and its potential role in cellular regulation. BioFactors 4, 95-104. 91. Dias, C.A., Cano, V.S., Rangel, S.M., Apponi, L.H., Frigieri, M.C., Muniz, J.R., Garcia, W., Park, M.H., Garratt, R.C., Zanelli, C.F., and Valentini, S.R., 2008. Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis. The FEBS Journal 275, 1874-1888. 92. Nishimura, K., Murozumi, K., Shirahata, A., Park, M.H., Kashiwagi, K., and Igarashi, K., 2005. Independent roles of eIF5A and polyamines in cell proliferation. The Biochemical journal 385, 779-785. 93. Saini, P., Eyler, D.E., Green, R., and Dever, T.E., 2009. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118-121. 94. Taylor, C.A., Sencbyna, M., Flanagan, J., Joyce, E.M., Clicbe, D.O., Boone, A.N., Culp-Stewart, S., and Tbompson, J.E., 2004. Role of eIF5A in TNF-α-mediated apoptosis of lamina cribrosa cells. Investigative Ophthalmology & Visual Science 45, 3568-3576. 95. Taylor, C.A., Sun, Z., Clicbe, D.O., Ming, H., Eshaque, B., Jin, S., Hopkins, M.T., Thai, B., and Tbompson, J.E., 2007. Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor α signaling. Experimental Cell Research 313, 437-449. 96. Li, A., Li, H.-Y., Jin, B.-F., Ye, Q.-N., Zhou, T., Yu, X.-D., Pan, X., Man, J.-H., He, K., Yu, M., Hu, M.R., Wang, J., Yang, S.C., Shen, B.F., and Zhang, X.M., 2004. A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis. Journal of biological chemistry 279, 49251-49258. 97. Liu, J., Zhang, X., Yang, F., Li, T., Wei, D., and Ren, Y., 2006. Antimetastatic effect of a lipophilic ascorbic acid derivative with antioxidation through inhibition of tumor invasion. Cancer Chemother Pharmacol 57, 584-590. 98. Chen, J.-H., Lin, H.-H., Chiang, T.-A., Hsu, J.-D., Ho, H.-H., Lee, Y.-C., and Wang, C.-J., 2008. Gaseous nitrogen oxide promotes human lung cancer cell line A549 migration, invasion, and metastasis via inos-mediated MMP-2 production. Toxicological Sciences 106, 364-375. 99. Liao, Y.-C., Shih, Y.-W., Chao, C.-H., Lee, X.-Y., and Chiang, T.-A., 2009. Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. Journal of agricultural and food chemistry 57, 8933-8941. 100. Hughes, R.C., 2001. Galectins as modulators of cell adhesion. Biochimie 83, 667-676 101. Moiseeva, E.P., Spring, E.L., Baron, J.H., and de Bono, D.P., 1999. Galectin-1 modulates attachment, spreading and migration of cultured vascular smooth muscle cells via interactions with cellular receptors and components of extracellular matrix. Journal of Vascular Research 36, 47-58. 102. Perillo, N.L., Marcus, M.E., and Baum, L.G., 1998. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. Journal of Molecular Medicine 76, 402-412. 103. Lahm, H., André, S., Hoeflich, A., Fischer, J.R., Sordat, B., Kaltner, H., Wolf, E., and Gabius, H.J., 2001. Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. Journal of Cancer Research and Clinical Oncology 127, 375-386. 104. Rubinstein, N,, Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Fainboim, L., Podhajcer, O.L., and Rabinovich, G.A., 2004. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 5, 241-251. 105. Goll, D.E., Thompson, V.F., Li, H., Wei, W., and Cong, J., 2003. The calpain system. Physiological Reviews 83, 731-801. 106. Nakagawa, T., and Yuan, J., 2000b. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. Journal of Cell Biology 150, 887-894. 107. Daniel, K.G., Anderson, J.S., Zhong, Q., Kazi, A., Gupta, P., and Dou, Q.P., 2003. Association of mitochondrial calpain activation with increased expression and autolysis of calpain small subunit in an early stage of apoptosis. International Journal of Molecular Medicine 12, 247-252. 108. Muñoz-Alonso, M.J., González-Santiago, L., Zarich, N., Martínez, T., Alvarez, E., Rojas, J.M., and Muñoz, A., 2008. Plitidepsin has a dual effect inhibiting cell cycle and inducing apoptosis via Rac1/c-Jun NH2-terminal kinase activation in human melanoma cells. Journal of Pharmacology and Experimental Therapeutics 324, 1093-1101. 109. Caraglia, M., Budillon, A., Vitale, G., Lupoli, G., Tagliaferri, P., and Abbruzzese, A., 2000. Modulation of molecular mechanisms involved in protein synthesis machinery as a new tool for the control of cell proliferation. European Journal of Biochemistry 267, 3919-3936. 110. Caraglia, M., Marra, M., Giuberti, G., D'Alessandro, A.M,, Budillon, A., del Prete, S., Lentini, A., Beninati, S., and Abbruzzese, A., 2001. The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis. Amino Acids 20, 91-104. 111. Chen, K.Y., and Liu, A.Y., 1997. Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biological Signals. 6, 105-109. 112. Park, M.H., Wolff, E.C., and Folk, J.E., 1993. Is hypusine essential for eukaryotic cell proliferation? Trends in Biochemical Sciences 18, 475-479. 113. Balabanov, S., Gontarewicz, A., Ziegler, P., Hartmann, U., Kammer, W., Copland, M., Brassat, U., Priemer, M., Hauber, I., Wilhelm, T., Schwarz, G., Kanz, L., Bokemeyer, C., Hauber, J, Holyoake, T.L., Nordheim, A., and Brümmendorf, T.H., 2007. Hypusination of eukaryotic initiation factor 5A (eIF5A): a novel therapeutic target in BCR-ABL-positive leukemias identified by a proteomics approach. Blood 109, 1701-1711. 114. Caraglia, M., Tagliaferri, P., Budillon, A., and Abbruzzese, A., 1999. Post-translational modifications of eukaryotic initiation factor-5A (eIF-5A) as a new target for anti-cancer therapy. Advances in Experimental Medicine and Biology 472, 187-198. 115. Caraglia, M., Marra, M., Giuberti, G., D'Alessandro, A.M., Baldi, A., Tassone, P., Venuta, S., Tagliaferri, P., and Abbruzzese, A., 2003. The eukaryotic initiation factor 5A is involved in the regulation of proliferation and apoptosis induced by interferon-alpha and EGF in human cancer cells. Journal of Biochemistry (Tokyo) 133, 757-765. 116. Takeuchi, K., Nakamura, K., Fujimoto, M., Kaino, S., Kondoh, S., and Okita, K., 2002. Heat stress-induced loss of eukaryotic initiation factor 5A (eIF-5A) in a human pancreatic cancer cell line, MIA PaCa-2, analyzed by two-dimensional gel electrophoresis. Electrophoresis 23, 662-669. 117. Taylor, C.A., Sun, Z., cliché, D.O., Ming, H., Eshaque, B., Jin, S., Hopkins, M.T., Thai, B., and Thompson, J.E., 2007. Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor alpha signalling. Experimental Cell Research 313, 437-449. 118. Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P., 2005. Global Cancer Statistics, 2002. CA-A Cancer Journal for Clinicians 55, 74–108. 119. Shivapurkar, N., Reddy, J., Chaudbary, P.M., and Gazdar, A.F., 2003. Apoptosis and lung cancer:A review. Journal of cellular biochemistry 88, 885-898.
|