[1] Becker, G. S. (1988). Family economics and macro behaviors. The American Economic Review, p.10
[2] Bowles, S., & Gintis, H. (2002). The inheritance of inequality. The Journal of Economic Perspectives, 16, 3–30.
[3] Bowles, S., Gintis, H., & Osborne Groves, M. (2005). Introduction. In S. Bowles, H. Gintis, & M. Osborne Groves (Eds.), Unequal chances Family background and economic success. New York: Russell Sage, pp. 1–22.
[4] R. Rumberger (2010), Education and the reproduction of social inequality in the United States: An empirical investigation, Economics of Education Review, 29 (2), pp. 246–254
[5] Becker, S. G., & Tomes, N. (1986). Human capital and the rise and fall of families. Journal of Labor Economics, 4, S1–S39.
[6] Bowles, S., Gintis, H., & Osborne, M. (2001). The determinants of earnings: A behavioral approach. Journal of Economic Literature, 39, 1137–1176.
[7] Timm, N.H., (2002). Applied Multivariate Analysis, Springer-Verlag, New York.
[8] Izenman, A.J., (2008). Modern Multivariate Statistical Techniques-Regression, Classification, and Manifold Learning. Springer, New York.
[9] Chang, Ly-yun. (2003). Taiwan Education Panel Survey: Users’ Guide and
The First Wave (2001). Center for Survey Research, Academia Sinica.
[10] Ping-yin Kuan. (2014). Taiwan Education Panel Survey and Beyond/2009: Telephone Follow-Up Survey of Panel-1 SH. Available from Survey Research Data Archive, Center for Survey Research, Research Center for Humanities and Social Sciences, Academia Sinica Web site: https:// srda.sinica.edu.tw[11] Haveman, R., & Wolfe, B. (1995). The determinants of children’s attainments: A review of methods and findings. Journal of Economic Literature, 33, 1829–1878.
[12] Mazumder, B. (2005a). The apple falls even closer to the tree than we thought: New and revised estimates of the intergenerational inheri- tance of earnings. In S. Bowles, H. Gintis, & M. Osborne Groves (Eds.), Unequal chances: Family background and economic success (pp. 80–99). New York: Russell Sage.
[13] Mazumder, B. (2005b). Fortunate sons: New estimates of intergenera- tional mobility in the United States using social security earnings data. Review of Economics and Statistics, 87, 235–255.
[14] Levine, D. I., & Mazumder, B. (2007). The growing importance of family: Evidence from brothers’ earnings. Industrial Relations, 46, 7–21.
[15] Jencks, C., Smith, M., Acland, H., Bane, M. J., Cohen, D., Gintis, H., et al. (1972). Inequality: A reassessment of the effects of family and schooling in America. New York: Basic Books.
[16] Farkas, G. (2003). Racial disparities and discrimination in education: What do we know, how do we know it, and what do we need to know? Teachers College Record, 105, 1119–1146.
[17] Kao, G., & Thompson, J. S. (2003). Racial and ethnic stratification in edu- cational achievement and attainment. Annual Review of Sociology, 29, 417–442.
[18] Coleman J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, S95-S120 .
[19] Coleman J. S. (1990). Foundations of Social Theory. Cambridge, MA: Belknap Press of Harvard University Press.
[20] Beller, A. & Chung, S. S. (1992). Family structure and educational attainment of children: Effect of remarriage. Journal of Population Economics, 5, 309-320.
[21] Ingels, S. J., Scott, L. A., Lindmark, J. T., Frankel, M. R., & Myers, S. L. (1992). National education longitudinal study of 1988, first follow-up student component data file user’s manual. Washington, D.C.: U.S. Department of Education.
[22] Beblo M. & Lauer, C. (2004). Do family resources matter? Economics of Transition, 12 (3), 537-558.
[23] Shavit Y., Yaish, M., & Bar-Haim, E. (2007). The Persistence of persistent inequality. In S. Scherer, R. Pollak, G. Otte, & Markus Gangl (eds.), From Origin to Destination: Trends and Mechanisms in Social Stratification Research (pp. 37-57). Frankfurt: Campus Verlag.
[24] Osborne Roves, M. (2005). Personality and the intergenerational transmis- sion of economic status. In S. Bowles, H. Gintis, & M. Osborne Groves (Eds.), Unequal chances: Family background and economic success (pp. 208–231). New York: Russell Sage.
[25] Heckman, J. J., & Rubinstein, Y. (2001). The importance of noncognitive skills: Lessons from the GED testing program. American Economic Review, 91, 145–149.
[26] Farkas, G. (2003). Cognitive skills and noncognitive traits and behaviors in stratification processes. Annual Review of Sociology, 29, 541–562.
[27] Eccles, J. S. (2009). Who am I and what am I going to do with my life? Personal and collective identities as motivators of action. Educational Psychologist, 44, 78−89.
[28] Julie S. Ashby & Ingrid Schoon (2010), Career success: The role of teenage career aspirations, ambition value and gender in predicting adult social status and earnings, Journal of Vocational Behavior 77 (2010) 350–360
[29] Cameron, S. V., & Heckman, J. J. (2001). The dynamics of educational attain- ment for Black, Hispanic, and White males. Journal of Political Economy, 109, 455–499.
[30] Mare, R. D. (1980). Social background and school continuation decisions. Journal of the American Statistical Association, 75, 295-305.
[31] Mare, R. D. (1981). Change and stability in educational stratification. American Sociological Review, 46, 72-87.
[32] Stolzenberg, R. M. (1994). Educational continuation by college graduates. American Journal of Sociology, 99, 1042-1077.
[33] Mullen, A. L., Goyette, K. A., & Soares, J. A. (2003). Who goes to graduate School? Social and academic correlates of educational continuation after college. Sociology of Education, 76(2), 143-169.
[34] Hout, M. (2007). Maximally Maintained Inequality Revisited: Irish Educational Mobility in Comparative Perspective. In M. N. Phadraig and E. Hilliard (eds.), Changing Ireland in International Comparison (pp. 23-40). Dublin: Liffey Press.
[35] Torche, F. (2011). Is a College Degree Still the Great Equalizer? Intergenerational Mobility across Levels of Schooling in the United States1.American Journal of Sociology, 117(3), 763-807.
[36] T. R. Hancock, T. Jiang, M. Li, and J. Tromp (1996). Lower bounds on learning decision lists and trees. Inform. Comput., vol. 126, no. 2, pp. 114–122.
[37] H. Zantema and H. L. Bodlaender (2000). Finding small equivalent decision trees is hard. Int. J. Found. Comput. Sci., vol. 11, no. 2, pp. 343–354.
[38] J. R. Quinlan, “Induction of decision trees (1986). Mach. Learn., vol. 1, pp. 81–106.
[39] L. Breiman, J. Friedman, R. Olshen, and C. Stone (1984). Classification and Regression Trees. Belmont, CA: Wadsworth.
[40] Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
[41] Breiman L (2001). “Random Forests.” Machine Learning, 45, 5–32.
[42] Diaz-Uriarte, R, Alvarez de Andr´es, S (2006). Gene selection and classification of microarray data using random forest, BMC Bioinformatics, 7:3.
[43] G. Nimrod, A. Szilagyi, C. Leslie, N. Ben-Tal (2009). Identification of DNA-binding proteins using structural, electrostatic and evolutionary features, Journal of Molecular Biology 387 (4) 1040–1053.
[44] J. Ramirez, J.M. Gorriz, R. Chaves, M. Lopez, D. Salas-Gonzalez, I. Alvarez, F. Segovia (2009). SPECT image classification using random forests, Electronics Letters 45 (12) 604–605.
[45] A.G. Heidema, J.M.A. Boer, N. Nagelkerke, E.C.M. Mariman, D.L. van der A, E.J.M. Feskens (2006). The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases, Accident Analysis and Prevention 7 (23) 1–15. MD, USA2004, pp. 337–345.
[46] P. Han, X. Zhang, R.S. Norton, Z.P. Feng (2009). Large-scale prediction of long disordered regions in proteins using random forests, BMC Bioinformatics 10 (8) 1–9.
[47] P.A. Hernandez, I. Franke, S.K. Herzog, V. Pacheco, L. Paniagua, H.L. Quintana, A. Soto, J.J. Swenson, C. Tovar, T.H. Valqui, J. Vargas, B.E. Young (2008). Predicting species distributions in poorly-studied landscapes, Biodiversity and Conservation 17 1353–1366.
[48] M. Thums, C.J.A. Bradshaw, M.A. Hindell (2008). A validated approach for supervised dive classification in diving vertebrates, Journal of Experimental Marine Biology and Ecology 363 75–83.
[49] J. Peters, B. De Baets, N.E.C. Verhoest, R. Samson, S. Degroeve, P. De Becker, W. Huybrechts (2007). Random forests as a tool for ecohydrological distribution modelling, Ecological Modelling 207 304–318.
[50] J. Peters, N.E.C. Verhoest, R. Samson, M. Van Meirvenne, L. Cockx, B. De Baets (2009). Uncertainty propagation in vegetation distribution models based on ensemble classifiers, Ecological Modelling 220 791–804.
[51] S. Bernard, L. Heutte, S. Adam (2007). Using random forests for handwritten digit recognition, ICDAR: Ninth International Conference on Document Analysis and Recognition, vol. 1–2, Curitiba, Brazil 2007, pp. 1043–1047
[52] H.T. Chen, T.L. Liu, C.S. Fuh (2006). Segmenting highly articulated video objects with weak-prior random forests, in: A. Leonardis, H. Bischof, A. Pinz (Eds.), ECCV 2006, Part IV, Lecture Notes in Computer Science, vol. 3954, Springer- Verlag, Berlin, Heidelberg, pp. 373–385.
[53] J. Ham, Y. Chen, M.M. Crawford, J. Ghosh (2005). Investigation of the random forest framework for classification of hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing 43 (3) 492–501.
[54] M.M. Crawford, J. Ham, Y. Chen, J. Ghosh (2003), Random forests of binary hierarchical classifiers for analysis of hyperspectral data, in: IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, IEEE, Greenbelt,
[55] S.R. Joelsson, J.A. Benediktsson, J.R. Sveinsson (2006), Feature selection for morphological feature extraction using random forests, in: Seventh Nordic Signal Processing Symposium, IEEE, New York, Reykjavik, Iceland, pp. 138–141.
[56] I. Oparin, O. Glembek, L. Burget, J. Cernocky (2008). Morphological random forests for language modeling of inflectional languages, in: IEEE Workshop on Spoken Language Technology, SLT 2008, IEEE, Goa, India, pp. 189–192.
[57] Hastie, T., Tibshirani, R., Friedman, J., (2001). The Elements of Statistical Learn-ing, Springer, Berlin; Heidelberg; New York.
[58] L. Breiman (2004), RFtools—for predicting and understanding data, Technical Report, Berkeley University, Berkeley, USA /http://oz.berkeley.edu/users/breiman/RandomForests/cc.papers.htm.
[59] Aslam, Javed A.; Popa, Raluca A.; and Rivest, Ronald L. (2007); On Estimating the Size and Confidence of a Statistical Audit, Proceedings of the Electronic Voting Technology Workshop (EVT ''07), Boston, MA, August 6, 2007
[60] Liaw, Andy (2012). "Documentation for R package randomForest". Retrieved 15 March 2013.
[61] Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern Recognition, 44(2), 330-349.
[62] Biau, G., Devroye, L., Lugosi, G., (2008). Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research. 9, 2039- 2057.
[63] Torgerson, W.S., (1952). Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419.
[64] Hastie, T., Tibshirani, R., Friedman, J., (2011). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York . (corrected 5th printing of 2nd edition).
[65] Rudnicki WR, Kierczak M, Koronacki J, Komorowski J (2006). “A Statistical Method for Determining Importance of Variables in an Information System.” In S Greco, H Y, S Hirano, M Inuiguchi, S Miyamoto, HS Nguyen, R Slowinski (eds.), Rough Sets and Current Trends in Computing, 5th International Conference, RSCTC 2006, Kobe, Japan, November 6– 8, 2006, Proceedings, volume 4259 of Lecture Notes in Computer Science, pp. 557–566. Springer-Verlag, New York.
[66] Kohavi R, John GH (1997). “Wrappers for Feature Subset Selection.” Artificial Intelligence, 97, 273–324.
[67] Nilsson R, Pen ̃a J, Bjo ̈rkegren J, Tegn ́er J (2007). “Consistent Feature Selection for Pattern Recognition in Polynomial Time.” The Journal of Machine Learning Research, 8, 612.
[68] Kursa, M. B., Jankowski, A., & Rudnicki, W. R. (2010). Boruta A System for Feature Selection. Fundamenta Informaticae, 101(4), 271-285.
[69] MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. pp. 281–297. MR 0214227. Zbl 0214.46201. Retrieved 2009-04-07.
[70] Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996). Simoudis, Evangelos; Han, Jiawei; Fayyad, Usama M., eds. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press. pp. 226–231.
[71] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander (1999). OPTICS: Ordering Points To Identify the Clustering Structure. ACM SIGMOD international conference on Management of data. ACM Press. pp. 49–60.
[72] D. R. Jones and M. A. Beltramo (1991), “Solving partitioning problems with genetic algorithms,” in Proc. 4th Int. Conf. Genetic Algorithms. San Mateo, CA: Morgan Kaufman.
[73] G. P. Babu and M. N. Murty (1994), “Simulated annealing for selecting initial seeds in the k-means algorithm,” Ind. J. Pure Appl. Math., vol. 25, pp. 85–94.
[74] G. P. Babu (1994), “Connectionist and evolutionary approaches for pattern clustering,” Ph.D. dissertation, Dept. Comput. Sci. Automat., Indian Inst. Sci., Bangalore, Apr.
[75] Krishna K, Murty M (1999). “Genetic K-means algorithm”, IEEE Transactions on Systems, Man and Cybernetics ,Part B: Cybernetics, 29:433-439.
[76] J. H. Holland (1975), Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. of Michigan Press.
[77] Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423.
[78] Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3), 511-528.
[79] David J. Ketchen, Jr & Christopher L. Shook (1996). "The application of cluster analysis in Strategic Management Research: An analysis and critique". Strategic Management Journal 17 (6): 441–458.
[80] Robert L. Thorndike (1953). "Who Belongs in the Family?". Psychometrika 18 (4): 267–276.
[81] R. Duda, P. Hart (1973), Pattern Classification and Scene Analysis, John Wiley and Sons, New York.
[82] A.K. Jain, R.C. Dubes (1988), Algorithms for Clustering Data, Prentice Hall, Englewood Cliff, New Jersey.
[83] Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216.
[84] Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. 20th Int. Conf. Very Large Data Bases, 487-499.
[85] Topor, R. & Shen, H. (2001) Construct robust rule sets for classification. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada: ACM Press, pp. 564–569.
[86] Antonie, M.-L., Za ̈ıane, O. R. (2003), Coman, A. Associative Classifiers for Medical Images, In Mining Multimedia and Complex Data (LNAI 2797), Springer-Verlag, 68– 83
[87] Thabtah, F. (2007). A review of associative classification mining. The Knowledge Engineering Review, 22(01), 37-65.
[88] Snedecor, W. & Cochran, W. (1989). Statistical Methods, 8th edn. Iowa City, IA: Iowa State University Press.
[89] Li, W., Han, J. & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple-class association rule. In Proceedings of the International Conference on Data Mining (ICDM’01), San Jose, CA, pp. 369–376.
[90] Baralis, E., Chiusano, S. & Graza, P. (2004). On support thresholds in associative classification. In Proceedings of the 2004 ACM Symposium on Applied Computing. Nicosia, Cyprus: ACM Press, pp. 553–558.
[91] Thabtah, F., Cowling, P. & Peng, Y. (2004). MMAC: A new multi-class, multi-label associative classification approach. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM’04), Brighton, UK, pp. 217–224.
[92] Thabtah, F., Cowling, P. & Peng, Y. (2005). MCAR: Multi-class classification based on association rule approach. In Proceeding of the 3rd IEEE International Conference on Computer Systems and Applications, Cairo, Egypt, pp. 1–7.
[93] Liu, B., Hsu, W. & Ma, Y. (1998). Integrating classification and association rule mining. In Proceedings of the International Conference on Knowledge Discovery and Data Mining. New York, NY: AAAI Press, pp. 80–86.
[94] Li, W., Han, J. & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple-class association rule. In Proceedings of the International Conference on Data Mining (ICDM’01), San Jose, CA, pp. 369–376.
[95] Antonie, M. & Zaïane, O. (2004). An associative classifier based on positive and negative rules. In Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. Paris, France: ACM Press, pp. 64–69.
[96] Ye, Y., Li, T., Jiang, Q., & Wang, Y. (2010). CIMDS: adapting postprocessing techniques of associative classification for malware detection. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(3), 298-307.
[97] Ly-yun Chang. (2003). Taiwan Education Panel Survey: The First Wave (Student Data) (C00124_A) [Data file]. Available from Survey Research Data Archive, Academia Sinica Web site: http:// srda.sinica.edu.tw
[98] Ly-yun Chang. (2003). Taiwan Education Panel Survey: The First Wave (Teacher Data) (C00124_C) [Data file]. Available from Survey Research Data Archive, Academia Sinica Web site: http:// srda.sinica.edu.tw
[99] Ly-yun Chang. (2003). Taiwan Education Panel Survey: The First Wave (Parent Data) (C00124_G) [Data file]. Available from Survey Research Data Archive, Academia Sinica Web site: http:// srda.sinica.edu.tw