[1] Rich A, RajBhandary U. Transfer RNA: molecular structure, sequence, and properties. Annual review of biochemistry. 1976;45:805-60.
[2] Quigley GJ, Rich A. Structural domains of transfer RNA molecules. Science. 1976;194:796-806.
[3] Varani G, McClain WH. The G‧ U wobble base pair. EMBO reports. 2000;1:18-23.
[4] Motorin Y, Helm M. tRNA stabilization by modified nucleotides. Biochemistry. 2010;49:4934-44.
[5] Gustilo EM, Vendeix FA, Agris PF. tRNA''s modifications bring order to gene expression. Current opinion in microbiology. 2008;11:134-40.
[6] Pamela F. Crain, McCloskey JA. The RNA modification database. Nucleic acids research. 1997;25:126-7.
[7] Nakai Y, Nakai M, Hayashi H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. The Journal of biological chemistry. 2008;283:27469-76.
[8] Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, et al. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proceedings of the National Academy of Sciences. 1985;82:4905-9.
[9] Agris PF, Vendeix FA, Graham WD. tRNA’s wobble decoding of the genome: 40 years of modification. Journal of molecular biology. 2007;366:1-13.
[10] Bjork GR, Durand J, Hagervall TG, Lundgren HK, Nilsson K, Chen P, et al. Transfer RNA modification: influence on translational frameshifting and metabolism. FEBS letters. 1999;452:47-51.
[11] Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes & development. 2010;24:1832-60.
[12] Crain PF, McCloskey JA. The RNA modification database. Nucleic acids research. 1996;24:98-9.
[13] Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF. Single atom modification (O--> S) of tRNA confers ribosome binding. Rna. 1999;5:188-94.
[14] Bjork GR, Huang B, Persson OP, Bystrom AS. A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. Rna. 2007;13:1245-55.
[15] Yasukawa T, Suzuki T, Ohta S, Watanabe K. Wobble modification defect suppresses translational activity of tRNAs with MERRF and MELAS mutations. Mitochondrion. 2002;2:129-41.
[16] Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K. Wobble modification defect in tRNA disturbs codon–anticodon interaction in a mitochondrial disease. The EMBO journal. 2001;20:4794-802.
[17] Suzuki T, Nagao A, Suzuki T. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley interdisciplinary reviews RNA. 2011;2:376-86.
[18] Sheftel A, Stehling O, Lill R. Iron–sulfur proteins in health and disease. Trends in Endocrinology & Metabolism. 2010;21:302-14.
[19] Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. The EMBO journal. 2003;22:4826-35.
[20] Lill R, Muhlenhoff U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem. 2008;77:669-700.
[21] Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′–3′ exonucleases Rat1 and Xrn1. Genes & development. 2008;22:1369-80.
[22] Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, et al. Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. The Journal of biological chemistry. 2004;279:12363-8.
[23] Nilsson K, Lundgren HK, Hagervall TG, Bjork GR. The Cysteine Desulfurase IscS Is Required for Synthesis of All Five Thiolated Nucleosides Present in tRNA from Salmonella enterica Serovar Typhimurium. Journal of Bacteriology. 2002;184:6830-5.
[24] Tong WH, Rouault TA. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell metabolism. 2006;3:199-210.
[25] Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry. 2000;39:7856-62.
[26] Stehling O, Netz DJ, Niggemeyer B, Rosser R, Eisenstein RS, Puccio H, et al. Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. Molecular and cellular biology. 2008;28:5517-28.
[27] Nakai Y, Nakai M, Lill R, Suzuki T, Hayashi H. Thio modification of yeast cytosolic tRNA is an iron-sulfur protein-dependent pathway. Molecular and cellular biology. 2007;27:2841-7.
[28] 許義申. 鐵螯合劑處理對於肌肉細胞 tRNA 硫醇鹼基修飾作用之影響. 輔仁大學營養科學系碩士論文. 2012.[29] Hershko A, Ciechanover A. The ubiquitin system for protein degradation. Annual review of biochemistry. 1992;61:761-807.
[30] Hershko A, Ciechanover A. The ubiquitin system. Annual review of biochemistry. 1998;67:425-79.
[31] Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature. 1995;373:81-3.
[32] van der Veen AG, Ploegh HL. Ubiquitin-like proteins. Annual review of biochemistry. 2012;81:323-57.
[33] Schlieker CD, Van der Veen AG, Damon JR, Spooner E, Ploegh HL. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:18255-60.
[34] Goehring AS, Rivers DM, Sprague GF, Jr. Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Molecular biology of the cell. 2003;14:4329-41.
[35] Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A, et al. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature. 2009;458:228-32.
[36] Petroski MD, Salvesen GS, Wolf DA. Urm1 couples sulfur transfer to ubiquitin-like protein function in oxidative stress. Proceedings of the National Academy of Sciences. 2011;108:1749-50.
[37] van der Veen A. Urm1 in tRNA thiolation and protein modification. 2011.
[38] Noma A, Sakaguchi Y, Suzuki T. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res. 2009;37:1335-52.
[39] Chowdhury MM, Dosche C, Lohmannsroben H-G, Leimkuhler S. Dual Role of the Molybdenum Cofactor Biosynthesis Protein MOCS3 in tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Humans. Journal of Biological Chemistry. 2012;287:17297-307.
[40] Schmitz J, Chowdhury MM, Hanzelmann P, Nimtz M, Lee E-Y, Schindelin H, et al. The Sulfurtransferase Activity of Uba4 Presents a Link between Ubiquitin-like Protein Conjugation and Activation of Sulfur Carrier Proteins†. Biochemistry. 2008;47:6479-89.
[41] Dewez M, Bauer F, Dieu M, Raes M, Vandenhaute J, Hermand D. The conserved Wobble uridine tRNA thiolase Ctu1–Ctu2 is required to maintain genome integrity. Proceedings of the National Academy of Sciences. 2008;105:5459-64.
[42] Huang B, Lu J, Bystrom AS. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. Rna. 2008;14:2183-94.
[43] Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, et al. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Molecular cell. 2007;28:860-70.
[44] Kalhor HR, Clarke S. Novel Methyltransferase for Modified Uridine Residues at the Wobble Position of tRNA. Molecular and cellular biology. 2003;23:9283-92.
[45] Huang B, Johansson MJ, Bystrom AS. An early step in wobble uridine tRNA modification requires the Elongator complex. Rna. 2005;11:424-36.
[46] Fu D, Brophy JA, Chan CT, Atmore KA, Begley U, Paules RS, et al. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Molecular and cellular biology. 2010;30:2449-59.
[47] Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, et al. The RNA modification database, RNAMDB: 2011 update. Nucleic acids research. 2011;39:D195-D201.
[48] Hamdane D, Argentini M, Cornu D, Golinelli-Pimpaneau Ba, Fontecave M. FAD/Folate-Dependent tRNA Methyltransferase: Flavin as a New Methyl-Transfer Agent. Journal of the American Chemical Society. 2012;134:19739-45.
[49] Yamagami R, Yamashita K, Nishimasu H, Tomikawa C, Ochi A, Iwashita C, et al. The tRNA recognition mechanism of folate/FAD-dependent tRNA methyltransferase (TrmFO). Journal of Biological Chemistry. 2012;287:42480-94.
[50] Davanloo P, Sprinzl M, Watanabe K, Albani M, Kersten H. Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance. Nucleic acids research. 1979;6:1571-81.
[51] Rhodes D, Piper P, Clark B. Location of a platinum binding site in the structure of yeast phenylalanine transfer RNA. Journal of molecular biology. 1974;89:469-75.
[52] Buck M, Griffiths E. Iron mediated methylthiolation of tRNA as a regulator of operon expression in Escherichia coli. Nucleic acids research. 1982;10:2609-24.
[53] Buck M, Griffiths E. Regulation of aromatic amino acid transport by tRNA: role of 2-methyIthio-N6-(Δ2-isopentenyl)-adenosine. Nucleic acids research. 1981;9:401-14.
[54] Haile DJ, Rouault TA, Tang CK, Chin J, Harford JB, Klausner RD. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proceedings of the National Academy of Sciences. 1992;89:7536-40.
[55] Ackrell B, Maguire J, Dallman P, Kearney E. Effect of iron deficiency on succinate-and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria. Journal of Biological Chemistry. 1984;259:10053-9.
[56] Liew Y-F, Shaw N-S. Mitochondrial cysteine desulfurase iron-sulfur cluster S and aconitase are post-transcriptionally regulated by dietary iron in skeletal muscle of rats. The Journal of nutrition. 2005;135:2151-8.
[57] Tong W-H, Rouault TA. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell metabolism. 2006;3:199-210.
[58] 徐韻欣. 膳食鐵營養狀況對於大鼠肌肉硫醇鹼基修飾tRNA的表現與其修飾作用之影響. 輔仁大學營養科學系碩士論文. 2010.[59] Shigi N, Suzuki T, Tamakoshi M, Oshima T, Watanabe K. Conserved bases in the TΨC loop of tRNA are determinants for thermophile-specific 2-thiouridylation at position 54. Journal of Biological Chemistry. 2002;277:39128-35.
[60] Wohlgamuth-Benedum JM, Rubio MAT, Paris Z, Long S, Poliak P, Lukeš J, et al. Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. Journal of Biological Chemistry. 2009;284:23947-53.
[61] Gehrke CW, Kuo KC. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. Journal of Chromatography A. 1989;471:3-36.
[62] Jackman JE, Alfonzo JD. Transfer RNA modifications: nature''s combinatorial chemistry playground. Wiley Interdisciplinary Reviews: RNA. 2013;4:35-48.
[63] Chen P, Jager G, Zheng B. Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC plant biology. 2010;10:201.
[64] Reeves PG, Nielsen FH, Fahey GC. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. The Journal of nutrition. 1993;123:1939-51.
[65] Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC. A soluble ribonucleic acid intermediate in protein synthesis. Journal of Biological Chemistry. 1958;231:241-57.
[66] Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, et al. Structure of a ribonucleic acid. Science. 1965;147:1462-5.
[67] Crick F. Codon—anticodon pairing: the wobble hypothesis. Journal of molecular biology. 1966;19:548-55.
[68] Smith J, Dunn D. The occurrence of methylated guanines in ribonucleic acids from several sources. Biochemical Journal. 1959;72:294.
[69] Laten HM, Cramer JH, Rownd RH. Thiolated nucleotides in yeast transfer RNA. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1983;741:1-6.
[70] Delk AS, Rabinowitz JC. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine. Proceedings of the National Academy of Sciences. 1975;72:528-30.
[71] Pathak C, Jaiswal YK, Vinayak M. Hypomodification of transfer RNA in cancer with respect to queuosine. RNA biology. 2005;2:143-8.
[72] Morris RC, Elliott MS. Queuosine modification of tRNA: a case for convergent evolution. Molecular genetics and metabolism. 2001;74:147-59.
[73] Frey B, McCloskey J, Kersten W, Kersten H. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. Journal of bacteriology. 1988;170:2078-82.
[74] Rosenberg AH, Gefter ML. An iron-dependent modification of several transfer RNA species in Escherichia coli. Journal of molecular biology. 1969;46:581-4.
[75] Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, et al. Rapid tRNA decay can result from lack of nonessential modifications. Molecular cell. 2006;21:87-96.
[76] Liu Y, Beer LL, Whitman WB. Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology. 2012;14:2632-44.
[77] Parcell S. Sulfur in human nutrition and applications in medicine. Alternative Medicine Review. 2002;7:22-44.
[78] Dahl J-U, Radon C, Buhning M, Nimtz M, Leichert LI, Denis Y, et al. The Sulfur Carrier Protein TusA Has a Pleiotropic Role in Escherichia coli That Also Affects Molybdenum Cofactor Biosynthesis. Journal of Biological Chemistry. 2013;288:5426-42.
[79] El Yacoubi B, Bailly M, de Crecy-Lagard V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annual review of genetics. 2012;46:69-95.
[80] Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jager G, et al. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular microbiology. 2010;76:1082-94.
[81] Mazauric MH, Dirick L, Purushothaman SK, Bjork GR, Lapeyre B. Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. The Journal of biological chemistry. 2010;285:18505-15.
[82] Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, Krokan HE, et al. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Molecular and cellular biology. 2010;30:1814-27.
[83] Kambampati R, Lauhon CT. MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry. 2003;42:1109-17.
[84] Sasarman F, Antonicka H, Horvath R, Shoubridge EA. The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Human molecular genetics. 2011;20:4634-43.
[85] Wang X, Yan Q, Guan M-X. Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS letters. 2007;581:4228-34.
[86] Wang X, Yan Q, Guan M-X. Mutation in MTO1 involved in tRNA modification impairs mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. Mitochondrion. 2009;9:180-5.
[87] Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K, et al. Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. The Journal of biological chemistry. 2005;280:1613-24.
[88] Wang X, Yan Q, Guan MX. Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. Journal of molecular biology. 2010;395:1038-48.
[89] Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annual review of nutrition. 1986;6:13-40.
[90] Finch C, Miller L, Inamdar A, Person R, Seiler K, Mackler B. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. Journal of Clinical Investigation. 1976;58:447.
[91] Willis WT, Brooks GA, Henderson SA, Dallman PR. Effects of iron deficiency and training on mitochondrial enzymes in skeletal muscle. Journal of Applied Physiology. 1987;62:2442-6.
[92] Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. American journal of physical medicine & rehabilitation. 2002;81:S40-S51.
[93] Cartier L, Ohira Y, Chen M, Cuddihee R, Holloszy J. Perturbation of mitochondrial composition in muscle by iron deficiency. Implications regarding regulation of mitochondrial assembly. Journal of Biological Chemistry. 1986;261:13827-32.