參考文獻
[1]P. Äyräs, G. N. Conti, S. Honkanen, and N. Peyghambarian, “Birefringence Control for Ion-Exchanged Channel Glass Waveguides”, Appl. Opt., Vol. 37, No. 36, pp. 8400-8405, 1998.
[2]L. Goldberg, R. Reedy, and S. H. Lee, “Silicon Photodiode for Optical Channel Waveguides”, Appl. Phys. Lett., Vol. 37, No. 2, pp. 195-197, 1980.
[3]M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-Temperature Operation of An InGaAsP Double-Heterostructure Laser Emitting at 1.55µm on a Si Substrate”, Appl. Phys. Lett., Vol. 57, No. 6, pp. 593-595, 1990.
[4]T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-Damage Resistant LiNbO3:Zn Crystal”, Opt. Lett., Vol. 15, No. 13, pp. 996-998, 1990.
[5]T. Fujiwara, X. Cao, R. Srivastava, and R. V. Ramaswamy, “Photorefractive Effect in Annealed Proton-Exchanged LiNbO3 Waveguides”, Appl. Phys. Lett., Vol. 61, No. 7, pp. 195-197, 1992.
[6]T. Fujiwara, X. F. Cao, and R. V. Ramaswamy, “Photorefractive Effect in Annealed Proton-Exchanged LiTaO3 Waveguides”, IEEE Transactions on Automatic Control, Vol.5, No.9, 1993.
[7]P.A. Morris, “Impurities in nonlinear optical oxide crystals”, J. Crystal Growth Vol.106, No.1, pp.76-88, 1990.
[8]G.E. Peterson, A.M. Glass, and T.J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes”, Appl. Phys Lett, Vol. 19, No. 5, pp. 130-132, 1971.
[9]G.G. Zhong, J. Jian, and Z.K. Wu, “Measurements of optically induced refractive-index damage in lithium niobate”, Proc. 11th Intern. Quantum Electronics Conf., IEEE. Cat. No. 801, pp. 631, 1980.
[10]Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter, “Photorefractive properties of iron-doped stoichiometric lithium niobate”, Opt. Lett., Vol. 22, No. 8, pp. 501, 1997.
[11]W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. E. Digonnet, and H. J. Shaw, “Photorefractive-Damage-Resistant Zn-Diffused Waveguides in MgO:LiNbO3”, Opt. Lett., Vol. 16, No. 13, pp. 995-997, 1991.
[12]L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by Photofraction and Thermal Effects”, J. Opt. A: Pure and Appl. Opt. No.5, pp. 280-283, 2003.
[13]Y. Shigematsu, M. Fujimura, and T. Suhara, “Fabrication of LiNbO3 TE/TM Waveguides for 1.5mm Wavelength Bband by Zn/Ni Diffusion in Low-Pressure Atmosphere”, Jpn. J. Appl. Phys., Vol. 41, No.7B, pp. 4825-4827, 2002.
[14]T. Suhara, T. Fujieda, M. Fujimura, and H. Nishihara, “Fabrication of Zn:LiNbO3 Waveguides by Diffusing ZnO in Low-Pressure Atmosphere”, Jpn. J. Appl. Phys., vol.39, No.8B, pp.864-865, 2000.
[15]J. S. Selvan, M. Fujimura, and T. Suhara, “Fabrication of Zn-indiffused LiNbO3 Optical Waveguides by Diffusing Sol-Gel Spin-Coated ZnO Film at Low-Pressure Atmosphere”, Jpn. J. Appl. Phys.,Vol. 43, No.8A, pp. 5313-5315, 2004.
[16]J. S. Selvan, M. Fujimura, and T. Suhara, “Fabrication of Zn-Indiffused LiNbO3 Optical Waveguides Using ZnS as Diffusion Source”, Jpn J. Appl. Phys., Vol.44, No.5A, pp. 3075-3076, 2005.
[17]I. Song H. Shin M. Cheong, J. Myoung, and M. Lee “Diffusion of Zn in Stoichiometric LiTaO3”, J. Crystal Growth, Vol.270, No.3-4, pp. 568-572, 2004.
[18]R. C. Twu, C. C. Huang, and W. S. Wang, “Zn Indiffusion Waveguide Polarizer on a Y-cut LiNbO3 at 1.32 μm Wavelength”, IEEE Photon. Technol. Lett. Vol. 12, No. 2, pp. 161-163, 2000.
[19]N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, “Electrical and Optical Properties of Amorphous Indium Zinc Oxide Films”, Thin Solid Films, Vol. 496, No. 1, pp. 99-103, 2006.
[20]S. B. Qadri, H. Kim, H. R. Khanc, A. Piqué, J. S. Horwitza, D. Chrisey, W. J. Kim, and E. F. Skelton, “Transparent Conducting Films of In2O3-ZrO2, SnO2-ZrO2 and ZnO-ZrO2”, Thin Solid Films, Vol. 377-378, No. 1, pp. 750-754, 2000.
[21]S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced Photorefractive Properties of LiNbO3:Fe Crystals by HfO2 Codoping”, Appl. Phys. Lett., Vol 89, No. 10, pp. 101126-1~3, 2006.
[22]P. Minzioni, L. Razzari, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped Congruent Lithium Niobate Crystals”, Appl. Phys. Lett., Vol. 86, No. 13, pp. 131914-1~3, 2005.
[23]Z. Xu, S. Xu, J. Zhang, X. Liu, and Y. Xu, “Growth and Photorefractive Properties of In:Fe:LiNbO3 Crystals with Various [Li]/[Nb] Ratios”, J. Crystal Growth, Vol. 280, No. 1-2, pp. 227-233, 2005.
[24]Z. Sun, H. Li, W. Cai, and L. Zhao, “Studies of Photorefractive Fields of MnO Doped Near Stoichiometric LiNbO3 Crystals”, Opt. Communications, Vol. 242, No. 1-3, pp. 253-257, 2004.
[25]F. Schiller, B. Herreros, and G. Lifante, “Optical Characterization of Vapor Zn-diffused Waveguides in Lithium Niobate”, J. the Opt. Society of America A, Vol. 14, No.2, pp. 425-429, 1997.
[26]A. Yariv, and P. Yeh, “Optical Waves in Crystals”, Opt. & Laser Technol., Vol. 17, No. 4, pp. 217-218, 1984.
[27]孫慶成, “光電概論”,全華科技圖書有限公司, pp.7-19~22.
[28]胡明理, “Zn:LiNbO3之晶體生長與其特性研究”, 國立中央大學光電科學所, 2004.
[29]L. Arizmendi, “Photonic Applications of Lithium Niobate Crystals”, Physica Status Solidi (a), Vol. 201, No. 2, pp. 253-283, 2004.
[30]C. Gu, Y. Liu, Y. Xu, J. J. Pan, Fengqing Zhou, and Henry He, “Photorefractive Materials and Devices are Becoming Viable Alternatives for Information Systems”, IEEE Circuits & Devices Magazine, Vol. 19, No. 11, pp. 17-23, 2003.
[31]李宜桓, “波導電光調制器在光學外差干涉量測之應用”, 南台科技大學光電工程研究所, 2010.
[32]P. Yeh, and C. Gu, “Optics of Liquid Crystal Displays-Jones Matrix Method”, Wiley Inter-Science.
[33]S. Thaniyavarn, “Wavelength-independent Optical-damage-immune LiNbO3 TE-TM mode converter”, Opt. Lett., Vol. 11, No. 1, pp. 39-41, 1986.
[34]S. O. Kasap, “Optoelectronics and Photonics Principles and Practices”, Pearson Education, Prentice Hall, pp. 16-27, 2001.
[35]R. C. Twu, H. H. Lee, C. Y. Yang, and H.Y. Hong, “Zn-diffused Polarization Phase Modulator in X-Cut Lithium Niobate”, MOC’07 , Paper No. H-71, Kagawa, Japan, 2007.
[36]T. Hashimoto, and T. Yoshino, “Optical heterodyne sensor using the Goos-Hänchen shift”, Opt. Lett., Vol. 14, No. 17, pp. 913-915, 1989.
[37]J. Guo, Y. Gao, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation”, Appl. Opt., Vol. 38, No. 31, pp. 6550-6555, 1999.
[38]H. P. Chiang, J. L. Lin, R. Chang, and S. Y. Su, “High-resolution angular measurement using surface-plasmon-resonance via phase interrogation at optimal incident wavelengths”, Opt. Lett., Vol. 30, No. 20, pp. 2727-2729, 2005.
[39]C. H. Hsieh, C. C. Tsai, H. C. Wei, L. P. Yu, J. S. Wu, and C. Chou, “Determination of retardation parameters of multiple-order wave plate using a phase-sensitive heterodyne ellipsometer”, Appl. Opt., Vol. 46, No. 23, pp. 5944-5950, 2007.
[40]J. B. Gotte, A. Aiello, and J.P. Woerdman, “Loss-induced transition of the Goos-Hanchen effect for metals and dielectrics”, Opt. Express, Vol. 16, No. 6, pp. 63961-3969, 2008.
[41]M. Merano, A. Aiello, G. W.’ Hooft, M. P. van Exter, E. R. Eliel, and J.P. Woerdman, “Observation of Goos-Hanchen shift in metallic reflection”, Opt. Express, Vol. 15, No. 24, pp. 15928-15934 , 2007.
[42]C. C. Tsai, H. C. Wei, C. H. Hsieh, J. S. Wu, C. E. Lin, and C. Chou, “Linear birefringence parameters determination of a multi-order wave plate via phase detection at large oblique incidence angles”, Opt. Communications, Vol. 281, No. 11, pp. 3036-3041, 2008.
[43]南台科技大學光電半導體中心, 紫外光/可見光光譜儀。
[44]鄭信民、林麗娟, “X光繞射應用簡介” 工業材料雜誌,材料分析技術專題, 181期, 91年1月, pp.100~108.[45]揚欽堯, “金屬氧化物擴散波導於鈮酸鋰之研究”,南台科技大學光電工程研究所, 1997.
[46]維基百科,拉曼光譜學, http://zh.wikipedia.org/wiki/拉曼光譜學.
[47]國立成功大學微奈米科技研究中心,拉曼光譜儀。
[48]M. L. Sun, C. T. Chia, M.L. Hu, J. Y. Chang, W.S. Tse, Z. P. Yang, and H. H. Cheng, “Raman and Ir Spectra of Zn-Doped Lithium Niobate Crystal”.
[49]汪建民, “材料分析(下冊)”, 中國材料科學學會, 材料科學叢書.
[50]R. C. Twu, “Zn-Diffused 1×2 Balanced-Bridge Optical Switch in a Y-Cut Lithium Niobate”, IEEE Photon. Technol. Lett., Vol. 19, No. 16, pp. 1269-1271, 2007.
[51]維基百科,鈮酸鋰晶體,http://zh.wikipedia.org/wiki/鈮酸鋰晶體.