一、中文文獻
1.尹相志(2006),SQL Server 2005 資料採礦聖經,台北,學貫出版。
2.李天行、唐筱菁(2004),整合財務比率與智慧資本於企業危機診斷模式之建構-類神經網路與多元適應性雲形迴歸之應用,資訊管理學報,第11卷 (第2期) ,頁161-1893.李沃牆、朱竣平(2008),信用評等、公司違約率與財務危機預測之探討,真理財經學報,(第18期),33-70。
4.林基煌(1999),財務危機之預防與管理,今日會計 (74),頁 2-9。5.林豐騰(2009),企業財務危機預測-整合財務指標、公司治理因素及智慧資本構面模型,績效與策略研究,第6卷 (第2期),頁59-72。6.林郁翎、黃建華 (2009),考慮公司治理之企業財務危機預警模型,東吳經濟商學學報,第64 卷,頁 23-56。7.邱志洲、簡德年 (2002),整合類神經網路與分類迴歸樹在建構企業危機診斷模式上之應用,中華管理評論國際學報,第5卷 (第4期),頁55-82。
8.邱登裕、鍾典村、吳致遠、謝齊莊(2007),以GA-SVM法探討企業財務危機之研究,中華管理學報,第8卷 (第4期),頁61-86。9.沈大白、張大成與劉宛鑫(2002),運用類神經網路建構財務危機預警模型,貨幣觀測與信用評等 (第38期),頁 95-102。10.許溪南、歐陽豪與陳慶芳(2007),公司治理、盈餘管理與財務預警模型之建構,會計與公司治理,第4卷 (第1期),頁85-121。11.陳順宇(2005) ,多變量分析(第四版)。台北:華泰文化。
12.湯惠雯、馮淑敏、令狐雅萍(2005) ,考慮產業訊息下之財務危機預警模式之研究,管理科學與統計決策,第2卷 (第1期),頁77-93。
13.黃劭彥、李超雄、洪光宏、吳東憲(2006),以經營效率觀點建立台灣資訊電子業財務危機預警模型,文大商管學報,第11卷 (第2期),頁1-20。14.楊雪蘭、唐豪駿(2010),結合公司治理機制,財務比率與總體經濟敏感度以建置財務危機預警模型-以台灣下市公司爲例,危機管理學刊,第7卷 (第2期),頁11-24。
15.蔡璧徽、黃鈺萍(2010),財務危機預測模型之比較分析,當代會計,第11卷 (第1期),頁51-78。
16.劉邦典、梁榮輝、粘元馨(2007) ,臺灣企業財務危機預警模型建構之研究,績效與策略研究,第4卷 (第3期),頁15-27。
二、英文文獻
1.Ahn, B. S., Cho, S. S. and Kim, C. Y., (2000), The integrated methodology of rough set theory and artificial neural network for business failure prediction, Expert Systems with Applications,18(2), pp. 65-74.
2.Altman, E. I., (1968), Financial ratios, discriminant analysis and the prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), pp. 589-609.
3.Atiya, A. F., (2001), Bankruptcy prediction for credit risk using neural networks: a survey and new results, IEEE Transactions on Neural Networks, 12(4), pp. 929-935.
4.Chen, W. S., and Du, Y. K., (2009), Using neural networks and data mining techniques for the financial distress prediction model, Expert Systems with Application, 36(2), pp. 4075-4086.
5.Deakin, E. B., (1972), A discriminant analysis of predictors of business failure, Journal of Accounting Research, 1972, 10(1), pp. 167-179.
6.Demyanyk, Y.and Hasan, I., (2010), Financial crises and bank failures: a review of prediction methods, Omega, 38(5), pp. 315-324.
7.Foreman, R. Dean., (2003), A Logit analysis of bankruptcy within the US local telecommunication industry, Journal of Economics and Business, 55(2), pp. 135-166.
8.Sun, J., and Li. H., (2008), Data mining method for listed companies’ financial distress prediction, Knowledge-Based System, 21(1), pp. 1-5.
9.Kim, H. S., and Sohn, S. Y., (2010), Support vector machines for default prediction of SMEs based on technology credit, European Journal of Operational Research, 201(3) , pp. 838-846.
10.Lee, T. S., Chiu, C. C., Lu, C. J., and Chen, I. F. (2002), Credit scoring using the hybrid neural discriminant technique , Expert Systems with Applications, 23(3) , pp. 245-254.
11.Ohlson, J. A. (1980), Financial ratios and the probabilistic prediction of bankruptcy , Journal of Accounting Research, Vol.18 (1), pp. 109-131.
12.Odom, M. D. (1990), A neural network model for bankruptcy prediction, International Joint Conference Neural Networks, 2, pp. 163-168.
13.Shin, K. S., Lee, T. S. and Kim, H. J., (2005), An application of support vector machines in bankruptcy prediction model , Expert Systems with Applications, 28(1), pp. 127-135
14.Shumway, T., (2001), Forecasting bankruptcy more accurately: a simple hazard model, Journal of Business, 74(1), pp.101-124.
15.Sim J, Wright CC., (2005), The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Physical Therapy, 85, pp. 257-268.
16.Tang, T. C. and Chi, L. C., (2005), Neural networks analysis in business failure prediction of Chinese importers: a between-countries approach, Expert Systems with Applications, 29(2), pp. 244-255.
17.Tsai, C. F., (2009), Feature selection in bankruptcy prediction, Knowledge- Based Systems, 22(2), pp. 120-127.
18.Tseng, F. M., Hu, Y. C., (2010), Comparing four bankruptcy prediction models: logit, quadratic interval logit, neural and fuzzy neural networks, Expert Systems with Applications, 37(3), pp. 1846-1853.
19.West, D., (2000), Neural network credit scoring models, Computers and Operations Research, 27(11-12), p p. 1131-1152.
20.Witten, I. H., and Frank, E., (2000), Data mining: practical machine learning tools and techniques with java implementations, San Francisco: Morgan Kaufmann.
21.Witten, I. H., and Frank, E., (2005), Data Mining: Practical machine learning tools and techniques (2nd ed.). San Francisco: Morgan Kaufmann.