參考文獻
中文文獻
1.王春笙,1996,以技術指標預測台灣股市股價漲跌之實證研究-以類神經網路與複迴歸模式建構,國立台灣大學資訊管理研究所碩士論文。2.申志偉,2007,匯率報酬之非線性調整與經濟價值可預測性,中原大學國際貿易學系碩士學位論文。3.李惠妍,2003,類神經網路與迴歸模式在台股指數期貨預測之研究,國立成功大學高階管理碩士在職專班碩士論文。
4.李其權,2009,三大法人期貨未平倉行為之訊息探討,國立中正大學國際經濟學系研究所碩士論文。5.林佳蓉,2003,成交量與未平倉量對期貨價格波動性之關聯性─臺灣期貨市場之實證,國立成功大學企業管理學系碩博士班碩士論文。6.林志娟、林志鴻、張慶暉,2009,迴歸入門分析:SAS程式報表精析解讀與個案建模範例,初版,東華書局,台北。
7.林貞汝,2009,應用基因演算法及自組織映射圖神經網路對外資在台股指數期貨持有成本之分析與大盤走勢行為知識發現,國立交通大學資訊管理研究所碩士論文。8.林群堯,2010,股價報酬指數、波動性指數及選擇權未平倉量的動態關係:以台灣指數型選擇權為例,國立成功大學財務金融研究所碩士論文。9.林鈺綾,2010,三大法人選擇權與期貨未平倉量之研究,國立交通大學資訊管理研究所碩士論文。10.林佳甫,2012,三大法人於臺指期市場買賣行為是否具參考價值,國立東華大學經濟學系碩士論文。11.侯惠月,2000,統計方法與類神經網路在台股指數期貨之研究,國立成功大學統計學研究所碩士論文。
12.查欣瑜,2011,法人籌碼對台股未來走勢影響之研究,國立交通大學財務金融研究所碩士論文。13.陳旭昇,2009,時間序列分析,修訂初版,東華書局,台北。
14.陳執中,2006,台股加權指數隔月收盤價預測之研究,國立成功大學統計學系碩博士班碩士論文。15.陳志鴻,2013,演化式類神經網路與計量方式預測台灣大盤指數,國立高雄應用科技大學金融資訊研究所碩士論文。16.郭裕凉,2013,三大法人籌碼面預測臺灣加權股價指數之研究,國立高雄應用科技大學金融資訊研究所碩士論文。17.張春芬,2010,三大法人期貨與選擇權未平倉部位分析,國立政治大學經營管理碩士學程碩士論文。18.曾冠儒,2008,三大法人於台灣期貨市場未平倉部位之研究,國立中正大學財務金融研究所碩士論文。19.童振源、葉家興,2013,未來事件交易簿:集體智慧的新平台與新典範,初版,遠流出版社,台北。
20.葉怡成,2003,類神經網路模式應用與實作,儒林書局。
21.劉宜峰,1996,以類神經網路與ARIMA 模式預測臺灣股市行為之適用性比較,東吳大學會計學研究所碩士論文。
22.劉瑞鑫,2003,時間序列與人工智慧方法在台股指數報酬率預測之績效比較,朝陽科技大學財務金融系碩士班碩士論文。23.駱國華,2009,應用類神經網路試探未平倉量於台指期貨之多空行為分析,國立交通大學管理學院碩士在職專班資訊管理組碩士論文。英文文獻
1.Akaike, H., 1974, “A New Look at the Statistical Model Identification,” IEEE Transcations on Automatic Control, 19, 716-723.
2.Box, G. E. P. and Jenkins, G. M., 1976, “Time Series Analysis Forecasting and Control,” 2nd Ed. Holden-Day, San Francisco.
3.Brad M. Barber, et al., 2009, “Just How Much Do Individual Investors Lose by Trading? ,” The Review of Financial Studies, Vol. 22, No. 2.
4.Dickey, D. A. and W. A. Fuller, 1979, “Distribution of the Estimators for Autoregression Time Series with a Unit Root,” Journal of America Statistical Association, 74, 427-432.
5.D. Wood and B. Dasgupta , 1996, “Classifying trend movements in the msci u.s.a.capital market index|a comparison of regression, arima and neural network methods. ” Computers and Operations Research.
6.Engle, R. F., Granger, C. W. J., 1987, “Cointegration and Error Correction: Representation, Estimation and Testing,” Econometrica, 55, pp.251-276.
7.Granger, C. W. J., 1969, “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,” Econometrica, 37, pp.424-438.
8.Granger, C. W. J. and P. Newbold ,1974, “Spurious Regressions in Econometrics,” Journal of Econometrics, 4, 111-120.
9.Grudnistski, G. and Osburn, L, 1993,“Forecasting S&P and Gold Future Prices: An Application of Neural Networks”, Journal of Futures Markets, Vol. 13, 631-643.
10.Johansen, S.,1988, “Statistical Analysis of Cointegration Vectors,” , Journal of Economics and Control, 12, pp.231-254.
11.Johansen, S., Juselius, K., 1990, “Maximum Likelihood Estimation and Inference on Cointegration with Applications to the Demand for Money,”, Oxford Bulltin of Economics and Statistics,” 52, pp.169-210.
12.James A. Freeman,David M. Skapura,1992,“Neural networks:algorithms, applications, and programming techniques,”, New York: Addison-Wesley Publishing Company.
13.K. Chakraborty, K. Mehrotra, and C. K. Mohan,1992, “Forecasting the behavior of multivariate time series using neural networks. ” , Internatinal Journal of Management Science.
14.Ljung, G. M. and G. E. P. Box ,1978,“On a measure of lack of fit in time series models”,Biometrika, 65, 297-303.
15.Liew, K. Y. and R. D. Brooks.,1998 ,“In The Kuala Lumpur Crude Palm Oil Futures Market.” The Journal of Futures Markets, p.985-999.
16.McCulloch, W. S., & Pitts, W. ,1943, “A logical calculus of the ideas immanent in nervous activity,"Bulletin of Mathematical Biophysics,Vol. 5, Iss. 1, 115-133
17.Newey, W. and K.West ,1987, “A simple positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,” Econometrica, 55, 703-708..
18.Rumelhart, D. E., McClelland, J. L., & the PDP Research Group,1986,”Parallel Distributed Processing,” Cambridge:MIT Press.
19.Rafiqul Bhuyan, Mo Chaudhury,2005 ,“Trading on the Information Content of Open Interest: Evidence from the US Equity Options Market”, Derivatives, Vol. 11, No. 1, pp. 16-36.
20.Schwartz, G.,1978,“Estimating the Dimension of a Model,”, Annals of Statistics, 6, 461-464.
21.Sims, C. ,1980, “Macroeconomics and Reality,” Econometrica, 48, pp.1-48.
22.Sandeep Srivastava,2003, “Informational Content of Trading Volume and Open Interest – an Empirical Study of Stock Option Market in India”, NSE Research Initiative Working Paper, No. 29.
23.Phillip, P. C. B. and P. Perron,1988, “Testing for a Unit Root in Time Series Regression,” Biometrika, 75, 355-346.
24.Pesaran, M.H., Timmermann, A., 1992 ,“ A simple non-parametric test of predictive performance”,Journal of Business and Economic Statistics 10, 467-465.
25.Zhang, G., Patuwo, B. E., & Hu, M. Y.,1998,“Forecasting with Artificial Neural Networks :The State of the Art”, International Journal of Forecasting, Vo.14, pp.35-62.