[1] 臺灣股票博物館。http://www.stockmuseum.com.tw/
[2] 臺灣證券交易所。http://www.twse.com.tw/ch/
[3] Lagrange_Multipliers。http://www.iit.edu/arc/workshops/pdfs/Lagrange_Multipliers.pdf
[4] Intelligent Control Techniques in Mechatronics - Genetic algorithm
http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/Eng/3.Genetic%20algorithm/_05.html
[5] Libsvm。http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[6] 徐茂炫,尤品涵、張至和(2011)。以 1980 年為分界探討臺灣股票發展,真理大學2011財經學術研討會論文集。
[7] 杜金龍(2008)。最新技術指標─在台灣股市應用的訣竅,增訂三版,財信出版。
[8] 黃婉君(2008)。比較ANFIS與類神經網路結合技術指標應用於股市預測之能力。大葉大學資訊管理學系碩士班碩士論文,未出版。[9] 李麗姬(2006)。統計方法與模糊理論應用於台灣股票投資決策之研究。國立成功大學統計學研究所碩士論文,未出版。[10] 陳世晃(2011)。東南亞與歐洲重點航線運量預測模式之建構。逢甲大學運輸科技與管理學系碩士班碩士論文,未出版。
[11] 柯坤志,吳方儒,李威成,鄭錦聰(2009)。支撐向量迴歸分析在股票價格上之預測與軟體開發,資訊科技國際研討會論文集。
[12] 黃祺偉(2010)。多核心支援迴歸向量機應用於股價預測。國立中山大學電機工程學系碩士論文,未出版。[13] 陳寬裕(2006)。結合遺傳演算法與支援向量迴歸於台灣股票加權指數之預測。計量管理期刊,第3卷第1期。
[14] 劉大銘,呂映皚,林聖翔,鄭文忠(2007)。多目標基因演算法於二進制編碼與實數編碼之比較。國機械工程學會第二十四屆全國學術研討會論文集。
[15] 陳嘉珮(2012)。運用基因演算法及最佳化資源分配法求解隨機需求之長期車輛問題。國立交通大學運輸科技與管理學系碩士班碩士論文,未出版。[16] 朱美珍,黃錦川,趙師堯(2012)。定期定額投資股票型基金及龍頭股股票報酬率之比較。國立空中大學管理與資理學系管理與資訊學報。[17] 廖偉真,雷立芬(2010)。不同樣本頻率之股市波動性估計--GARCH、TGARCH與EGARCH之比較,臺灣銀行季刊第61卷第4期,第294-307頁。。[18] 盧德澤,洪瑞成(2013)。探討運用不同種類的已實現波動估計量於波動擇時策略。中國文化大學財務金融學系碩士班碩士論文,未出版。[19] 林豐澤(2005)。演化式計算下篇:基因演算法以及三種應用實例。智慧科技與應用統計學報,第3卷第4期,第29-56頁。[20] 莊益源,張鐘霖,王祝三(2003)。波動率模型預測能力的比較-以臺指選擇權為例。台灣金融財務季刊,第4卷第2期,第41-63頁。
[21] P. N. Mahdi, T. Hamidreza, B. H. Homa (2010). Stock market value prediction using neural networks, International Conference on Computer Information Systems and Industrial Management Applications, pp. 132-136.
[22] S. Wei, X. Mian (2009). Stock index Forecast with back propagation neural network optimized by genetic algorithm, Information and Computing Science, vol. 2, pp.376-379.
[23] K. J. Kumaran, A. Kailas (2012). Prediction of future stock close price using proposed hybrid ANN model of functional link fuzzy logic neural model, IAES International Journal of Artificial Intelligence, vol. 1, pp.25-30.
[24] L. Y. Wei, T.L. Chen, T.H. Ho (2011). A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market, Expert Systems with Applications, vol. 38, pp.13625-13631.
[25] C. H. Cheng, L. Y. Wei, J. W. Liu, T. L. Chensting (2013). OWA-based ANFIS model for TAIEX forecasting, Economic Modelling, vol. 30, pp. 332-448.
[26] R. Abirami, M. S. Vijaya (2012). Stock price prediction using support vector regression, Global Trends in Computing and Communication Systems, pp. 588-597.
[27] H. I. Hsieh, T.P. Lee, T.S. Lee (2011). A hybrid particle swarm optimization and support vector regression model for financial time series forecasting, International Journal of Business Administration, vol. 2, pp.48-56.
[28] G. Bloch, F. Lauer, G. Colin b, Y. Chamaillard (2008). Support vector regression from simulation data and few experimental samples, Information Sciences, vol. 178, pp.3813-3827.
[29] S. M. Chen, P.Y. Kao (2013). TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines, Information Sciences, vol. 247, pp.62-71.
[30] S. J. Koopman,B. Jungbacker, E. Hol (2005). Forecasting daily variability of the S&;P 100 stock index using historical, realised and implied volatility measurements, Journal of Empirical Finance, vol. 12, pp.445-475.
[31] T. G. Andersen, T. Bollerslev (1998). Answering the skeptics: yes, standard volatility models do provide accureate forecasts, International Economic Review, vol. 39, pp. 885-905.
[32] A. M. Fuertes, E. Kalotychou, N. Todorovic (2009). On forecasting daily stock volatility: The role of intraday information and market conditions, International Journal of Forecasting, vol. 25, pp. 259-281.
[33] B. Mandelbrot (1963). The variation of certain speculative prices, The Journal of Business, vol. 36, No.4, pp. 394-419
[34] E. F. Fama (1965). The behavior of stock-market prices, Journal of Business, vol. 39, pp.34-105.
[35] R. F. Engle (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, vol. 50, pp. 987-1007.
[36] T. Bollerslev (1986). Generalized auto regressive conditional heteroskedasticity, Journal of Econometrics, vol. 31, pp. 307-327.
[37] V. N. Vapnik (1995). The nature of statistical learning theory, Springer-Verlag, New York.
[38] W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer,P. A. Torres-Carrasquillo (2006). Support vector machines for speaker and language recognition, Computer Speech and Language, vol. 20, pp. 210–229.
[39] X. Y. Wang, T. W. Wang, J. Bu (2011). Color image segmentation using pixel wise support vector machine classification, Pattern Recognition, vol. 44, pp. 777-787.
[40] T. Ferenci, L. Kovács, B. Benyó, A. Kovács (2012). Using support sector machines to recognize changes characteristic to obesity in laboratory result, 5th European Conference of the International Federation for Medical and Biological Engineering IFMBE Proceedings, vol. 37, pp. 215-218.
[41] P. Ou, H. Wang (2009). Prediction of stock market index movement by ten data mining techniques, Modern Applied Science, vol. 3, pp.28-42.
[42] L. Salim (2011). A comparison of PNN and SVM for stock market trend prediction using cconomic and technical information, International Journal of Computer Applications, vol. 29, pp.24-30.
[43] V. Vapnik, S. Golowich, and A. Smola (1997). Support vector method for function approximation, regression estimation, and signal processing, Neural Information Processing Systems, vol. 9, pp.281-287.
[44] K. Y. Chen, C. H. Wang (2007). Support vector regression with genetic algorithms in forecasting tourism demand, Tourism Management, vol. 28, pp. 215-226.
[45] X. Yu, Z. Qi, Y. Zhao (2013). Support vector regression for newspaper/ magazine sales forecasting, Information Technology and Quantitative Management, vol. 17, pp. 1055-1062.
[46] C. F. Huang (2012). A hybrid stock selection model using genetic algorithms and support vector regression, Applied Soft Computing, vol. 12, pp. 807-818.
[47] L. J. Kao, C. C. Chiu, C. J. Lu, J. L. Yang (2013). Integration of nonlinear independent component analysis and support vector regression for stock price forecasting, Neurocomputing, vol. 99, pp. 534-542.
[48] X. Liang, R. Cao, Z. Ni (2013). Associating stock prices with web financial information time series based on support vector regression, Neurocomputing, vol. 115, pp. 142–149.
[49] J. H. Holland (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press.
[50] E. Imen, M. Yazid, D.P. Stéphane (2008). Genetic local search algorithm for minimizing total weighted tardiness in the jobs, Computers &; Operations Research, vol. 35, pp.2599-2616.
[51] S. Anam, M. S. Islam, M.A. Kashem, M.N. Islam, M.R. Islam, M.S. Islam (2009). Face recognition using genetic algorithm and back propagation neural network, Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp.811-814.
[52] S. C. Nayak, B. B. Misra, H. S. Behera (2012). Index prediction with neuro-genetic hybrid network: A comparative analysis of performance, IEEE International Conference on Computing, Communication and Applications (ICCCA-2012), pp. 1-6.
[53] L. Y. Wei (2013). A GA-weighted ANFIS model based on multiple stock market volatility causality for TAIEX forecasting, Applied Soft Computing, vol. 13, pp. 911-920.
[54] R. Choudhry, K. Garg (2008), A Hybrid machine learning system for stock market forecasting, World Academy of Science, Engineering and Technology, vol. 15, pp. 315-318.
[55] J. B. MacQueen (1967). Some methods for classification and analysis of multivariate observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281-296.
[56] J. C. Hung (2008). A genetic algorithm approach to the spectral estimation of time series with noise and missed observations, Information Sciences, vol. 178, pp. 4632–4643.
[57] S. R. Gunn (1998). Support vector machines for classification and regression, ISIS technical report, Image Speech and Intelligent Systems Group.
[58] S. Chen, K. Jeong, W. Härdle (2008). Support vector regression based GARCH model with application to forecasting volatility of financial returns, SFB 649 Discussion Paper of Economic Risk, Berlin.
[59] A. Smola, C. Burges, H. Drucke, S. Golowich, L. V. Hemmen, K. Muller, B. Scholkop, V. Vapnik (1996). Regression estimation with support vector learning machines, Master’s Thesis, Technische Universität München.
[60] A. J. Smola, B. Schölkopf (2004). A Tutorial on Support Vector Regression, Statistics and Computing, vol. 14, pp. 199-222.
[61] C. Campbell (2002). Kernel methods:a survey of current techniques, Neurocomputing, vol. 48, pp. 63-84.