[1]Adamo, F., F. Attivissimo, A. Di Nisio, and M. Savino, “A low-cost inspection system for online defects assessment in satin glass”, Measurement, 42(9), 1304-1311 (2009).
[2]Alzubi, S., N. Islam, and M. Abbod, “Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation”, International Journal of Biomedical Imaging, 0-18 (2011).
[3]Boubchir, L., J. Fadili, “Multivariate statistical modeling of images with the curvelet transform”, in Proceedings of the 8th International Conference on Signal Processing, Pattern Recognition, and Applications, 747–750 (2005).
[4]Cand, E. “Fast discrete curvelet transforms”, Department of Statistics, Stanford University, Stanford, 1–44 (2006).
[5]Cand, E. J., D. L. Donoho, “New tight frames of curvelets and optimal representations of objects with C2 singularities”, Department of Statistics, Stanford University, Stanford, 1–39 (2002).
[6]Fezani, F., A. Rahmain, “Wavelets analysis for defects detection in flat glass”, Multi-conference on Computional Engineering in Systems Applications (CESA), (2), 132–139 (2006).
[7]Cand, E., L. Demanet, and L. Ying, CurveLab Toolbox, Version 2.0.3, 1–4, (2006).
[8]Chen, Y. C., J. H. Yu, M. C. Xie, and F. J. Shiou, “Automated optical inspection system for analogical resistance type touch panel”, International Journal of the Physical Sciences, 6(22), 5141-5152 (2011).
[9]Do, M., M. Vetterli, “Image denoising using orthonormal finite ridgelet transform”, in Wavelet applications in signal and image processing VIII, 4119, 831–842 (2003).
[10]Demanet, L., L. Ying, “Curvelets and wave atoms for mirror-extended images”, Department of Mathematics, University of Texas at Austin, Austin, 1–15 (2007).
[11]Derganc, J., B. Likar, R. Bernard, D. Tomaevic, and F. Pernus, “Real-time automated visual inspection of color tablets in pharmaceutical blisters”, Real-Time Imaging, 9(2), 113–124 (2003).
[12]Eriksson, Brian. “The very fast curvelet transform”, ECE 734 - VLSI Structures for Digital Signal Processing, Final Project Report (2006).
[13]Fadili, M. J., J.L. Starck, and F. Murtagh, “Inpainting and zooming using sparse representations”, The Computer Journal, 52(1), 64–79 (2008).
[14]Gonzalez, R.C., Woods, R.E., Digital image processing, 3rd Ed., Prentice Hall, New Jersey, (2008).
[15]Jain, Ramesh, R. Kasturi, and B. G. Schunck, Machine Vision Internatioal Editons, New York, NY, McGraw Hill, 76-86 (1995).
[16]Kalaivani, M., M. S. Jeyalakshmi, and V. Aparna, “Extraction of retinal blood vessels using curvelet transform and kirsch’s templates”, International Journal of Emerging Technology and Advanced Engineering, 2(11), 2250-2459 (2012).
[17]Khoje, S. A., S. K. Bodhe, and A. Adsul, “Automated skin defect identification system for fruit grading based on discrete curvelet transform”, International Journal of Emerging Technology, 5(4), 3251–3256 (2013).
[18]Kim, S. C., T. J. Kang, “Texture classification and segmentation using wavelet packet frame and gaussian mixture model”, Pattern Recognition, 40(4), 1207–1221 (2007).
[19]Li, W.C., D.M. Tsai, “Wavelet-based defect detection in solar wafer images with inhomogeneous texture”, Pattern Recognition, 45(2), 742–756 (2011).
[20]Lin, H., G. C. Lin, C. Chung, and W. Lin, “Wavelet-based neural network and statistical approaches applied to automated visual inspection of LED chips”, Journal of Scientific & Industrial Research, 67, 412–420 (2008).
[21]Lin, H.D. “Automated visual inspection of ripple defects using wavelet characteristic based multivariate statistical approach”, Image and Vision Computing, 25(11), 1785–1801 (2007).
[22]Liu, H., Y. Wang, and F. Duan, “Glass bottle inspector based on machine vision”, World Academy of Engineering and Technology, 2, 673–678 (2008).
[23]Lu, C.J., D.M. Tsai, “Independent component analysis-based defect detection in patterned liquid crystal display surfaces”, Image and Vision Computing, 26(7), 955–970 (2008).
[24]Lu, Y. M., M. N. Do, “Multidimensional directional filter banks and surfacelets”, IEEE Transactions on Image Processing : A Publication of the IEEE Signal Processing Society, 16(4), 918–31 (2007).
[25]Ma, H., G. Su, J. Wang, and Z. Ni, “A glass bottle deffect detection system without touching”, Proceeding of the first international confererence on machine learning and cybernetics , 628–632 (2002).
[26]Montgomery, D. C., Introduction to Statistical Quality Control (6e), John Wiley & Sons, Inc (2009).
[27]Majumdar, A. “Bangla basic character recognition using digital curvelet transform”, Journal of Pattern Recognition Research, 1, 17–26 (2007).
[28]Mandal, T., Q. M. J. Wu, “Face recognition using curvelet based PCA”, 2008 19th International Conference on Pattern Recognition, 1–4 (2008).
[29]Manikandan, M., A. Saravanan, and K. B. Bagan, “Curvelet transform based embedded lossy image compression”, 2007 International Conference on Signal Processing, Communications and Networking, (1), 274–276 (2007).
[30]Mar, N. S. S., P. K. D. V. Yarlagadda, and C. Fookes, “Design and development of automatic visual inspection system for PCB manufacturing”, Robotics and Computer-Integrated Manufacturing, 27(5), 949–962 (2011).
[31]Münch, B., P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet-fourier filtering”, Optics Express, 17(10), 8567–91 (2009).
[32]Oh, C.H., H. Joo, and K. H. Rew, “Detecting Low-Contrast defect regions on glasses using highly robust Model-Fitting estimator”, International Conference Control Automation and Systems, 2138–2141 (2007).
[33]Perng, D. B., C. C. Chou, and S. M. Lee, “Design and development of a new machine vision wire bonding inspection system”, International Journal of Advanced Manufacturing Technology, 34, 323-334 (2006).
[34]Quintin, S., Y. Cedex, “Automatic inspection systems for the flat glass industry”, Industry Applications Society Annual Meeting, 2, 1370-1374 (1989).
[35]Rakvongthai, Y., S. Oraintara, “Statistics and dependency analysis of the uniform discrete curvelet coefficients and hidden Markov tree modeling”, 2009 IEEE International Symposium on Circuits and Systems, 525–528 (2009).
[36]Satorres Martínez, S., J. Gómez Ortega, J. Gámez García, and a. Sánchez García, “A sensor planning system for automated headlamp lens inspection”, Expert Systems with Applications, 36(5), 8768–8777 (2009).
[37]Smith, P., D. B. Reid, C. Environment, L. Palo, P. Alto, and P. L. Smith, “A threshold selection method from Gray-Level histograms”, IEEE International Symposium on Circuits and Systems, 62–66 (1979).
[38]Starck, J.L., E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising”, IEEE Transactions on Image Processing : A Publication of the IEEE Signal Processing Society, 11(6),607-684 (2002).
[39]Thomson, D., G. Hennenfent, H. Modzelewski, and F. J. Herrmann, “A parallel windowed fast discrete curvelet transform applied to seismic processing”, SEG Technical Program Expanded Abstracts 2006, 2767–2771 (2006).
[40]Tsai, D.M., S. M. Chao, “An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures”, Image and Vision Computing, 23(3), 325–338 (2005).
[41]Tsai, D. M., B. Hsiao, “ Automatic surface inspection using wavelet reconstruction”, Pattern Recognition, 34(6), 1285–1305 (2001).
[42]Vo, A., S. Oraintara, “A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation”, Signal Processing: Image Communication, 25(1), 28–46 (2010).
[43]Ye, Z., Y. Ye, and H. Mohamadian, “Digital image wavelet compression enhancement via particle swarm optimization”, 2009IEEE Int. Conf. on Control and Automation (Chrisrchurch, NewZeland), 2287–2292 (2009).
[44]Zhang, Y., T. Li, and Q. Li, “Defect detection for tire laser shearography image using curvelet transform based edge detector”, Optics & Laser Technology, 47, 64–71 (2013).
[45]Zhao, W., A. Rosenfeld, “Face Recognition : A Literature Survey”, ACM computing Surveys, 35(4), 399–458 (2003).
[46]Zhao, X., Tao. Jiang, “Researcg and application of image denoising method based on curvelet transform”, The International Archives of the Photogrammetry, 62, 363–368 (1999).
[47]月石健司•黑沢 理共編。陳連春譯,觸控面板技術解說,建興文化事業,台北(2012)。
[48]江軍達,「應用灰關聯分析於離散餘弦頻譜之自動化表面瑕疵檢測」,碩士論文,朝陽科技大學工業工程與管理所,台中(2007)。
[49]材料世界網,多點觸控面板開發動向。
http://www.fpdwin.com/download/multitptechfpdwin.pdf.
[50]李英達,「TFT-LCD 小尺寸面板之玻璃表面瑕疵的自動強化及檢測」,碩士論文,成功大學資訊工程學系,連震傑教授指導,(2005年)。[51]李明慶,「應用小波轉換(Wavelet transform)與曲線波轉換(Curvelet transform)於製程中多晶矽太陽能晶片之分類與識別」,碩士論文,元智大學工業工程所,桃園(2008)。
[52]李永彬,數位時代的「新一點靈」-觸控面版,產經資訊,第43頁(2003)
[53]唐珮玲,「應用HHT於曲面光學元件之可視瑕疵檢測」,碩士論文,朝陽科技大學工業工程與管理所,台中(2012)。[54]陳朝治,「應用影像處理與類神經網路於ITO導電玻璃之瑕疵分類」,碩士論文,國立台灣科技大學自動化及控制研究所,台北(2007)。[55]陳興倫,「使用小波包分解與部分最小平方法於光學元件之可視瑕疵檢測」,碩士論文,朝陽科技大學工業工程與管理所,台中(2007)。[56]陳昶宇,「使用串聯電阻降低電阻式觸控面板的功率消耗」,在職專班碩士論文,輔仁大學電子工程學系,台北(2007)。[57]陳韋吉,「透明玻璃之自動化可視瑕疵檢測」,碩士論文,朝陽科技大學工業工程所,台中(2011)。[58]陳靜宜,「基於Gabor特徵與支持向量機之車胎紋路辨識」,碩士論文,大業大學電機工程系,台中(2010)。[59]黃智政,「應用區塊離散餘弦轉換搭配灰預測模式檢測車用鏡面玻璃表面瑕疵」,碩士論文,朝陽科技大學工業工程所,台中(2009)。[60]楊忠曄,「利用焦點區域血管形狀及紋路特徵辨識窄頻影像大腸息肉類型」,碩士論文,輔仁大學資訊工程系,台北(2011)。[61]蔡環樺,「觸控面板之自動化表面瑕疵檢測」,碩士論文,朝陽科技大學工業工程與管理所,台中(2012)。[62]劉美君,Truly Touched Everywhere-AMOLED面板發展與挑戰,工研院,IEK產業情報網(2011)。