中文部分
1.李天行與唐筱菁 (2004)。整合財務比率與智慧資本於企業危機診斷模式之建構-類神經網路與多元適應性雲形迴歸之應用。資訊管理學報。11(2),161-189。
2.邱志洲與簡德年 (2002)。整合類神經網路與分類迴歸樹在構建企業危機診斷模式上之應用。中華管理評論。15(4)。
3.邱志洲、田政祺與周宇超 (2005)。資料探勘中集群模式與分類模式之建構-模糊自適應用共震理論網路、分類迴歸樹與類神經網路之整合與應用。輔仁管理評論。22(2)。4.池千駒 (1999)。運用財務性、非財務性資訊建立我國上市公司財務困難預警模式。未出版碩士論文,成功大學會計研究所,台南。5.余尚武與洪琳美 (2006) 。運用支撐向量機與類神經網路於銀行之授信。建華金融季刊,(33),27-57。
6.林文修 (2000)。演化式類神經網路為基底的企業財務危機診斷模式:智慧資本之應用。未出版博士班論文,國立中央大學資訊管理所,中壢。7.林淑萍、黃劭彥與蔡昆霖 (2007)。企業危機預警模式之研究-DEA-DA、羅吉斯迴歸與類神經網路之應用。會計與公司治理。4(1),5-56。8.武維邦與陳柑 (2006)。企業財務危機預測模式之研究。工商管理學刊。2(1),15-26。
9.吳明機 (2006)。台灣電子資訊產業之展望。兩岸經貿月刊。
10.周百隆與盧俊安 (2007)。以Cascaded Logistic Model建構我國企業財務危機預警模型之研究。中華管理評論。10(2)。
11.施人英、陳文華與吳壽山 (2006)。探討支持向量機器在發行人信用評等分類模式之應用。資訊管理學報。14(3),155-178。12.夏百陽 (2002)。上市公司財務危機預警模式之建立。未出版碩士論文,銘傳大學金融研究所,台北。13.洪光宏 (2006)。以經營效率觀點建立台灣資訊電子業財務危機預警模型。文大商管學報。11(2)。
14.陳生祥 (2005)。運用資料探勘技術構建企業財務危機預警模式-結合財務與非財務資料。未出版碩士論文,中原大學資訊管理研究所,中壢。15.高強、黃旭男 (2003)。管理績效評估-資料包絡分析法。台北: 華泰文化事業股份有限公司。
16.高強 (2003)。管理績效評估-資料包絡分析法(第一版)。台北:華泰文化事業股份有限公司。
17.陳麗妃 (2006)。整合約略集合論、支援向量機與決策樹之資料挖礦架構及其個案研究。未出版博士論文,國立清華大學工業工程與工程管理學系,新竹。18.陳莉莉 (1993)。財務困難預測模式中分割點之探討-以台灣上市公司為例。未出版碩士論文,交通大學管理科學研究所,新竹。19.陳肇榮 (1983)。運用財務比率預測財務危機之實證研究。未出版碩士論文,國立台灣大學商學所,台北。20.張大成、周麗娟與黃筱雯 (2004)。經營效率與企業危機相關性研究。信用資訊月刊。2。
21.許溪南、歐陽豪與陳慶芳 (2007)。公司治理、盈餘管理與財務危機預警模型之建構。會計與公司治理。4(1),85-121。22.翁頌舜與梁德馨 (2002)。資料採礦資料缺值插補之變異數分析。輔仁管理評論。9(3),163-180。
23.莊淳淩、林榮禾、管孟忠與劉奕廷 (2007)。應用DEA評估營行業CRM績效。輔仁管理評論。14(1),27-40。24.湯玲郎與施並洲 (2001)。灰關聯分析、類神經網路分析、案例推理法於財務危機預警模式之應用研究。中華管理評論。4(2)。
25.黃振豐與呂紹強 (2000)。企業財務危機預警模式之研究-以財務及非財務建構。當代會計。1(1),19-40。
26.黃博怡、張大成與江欣怡 (2006)。考慮整體經濟因素之企業財務預警模型。金融風險管理季刊。2(2),75-89。27.楊浚泓 (2000)。考慮財務操作與合併報表後之財務危機預警模式。未出版碩士論文,國立中央大學財務管理,中壢。英文部分
1.Altman, E. I. (1968), Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance , 23(4), 589-609.
2.Altman, E. L., Edward, I., Haldeman, R., & Narayanan, P. (1977). A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 29-54.
3.Banker, R. D., Chanes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 1078-1092.
4.Bauer, P. W., Berger, A. N., Ferrier, G. D., & Humphrey, D. B. (1999). Consistency conditions for regulatory analysis of financial institutions: A comparison of frontier efficiency methods. Journal of Economics and Business, 50, 85-114.
5.Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 1-25.
6.Belkaoi, A. (1980). A industrial bond ratings: A new look,” Financial Management, 44–51.
7.Bozec, R. & Dia, M. (2007). Board structure and firm technical efficiency: Evidence from Canadian state-owned enterprises. European Journal of Operational Research, 177, 1734-1750.
8.Calderon, T. G. & Cheh, J. J. (2002). A road-map for future neural networks research in auditing and risk assessment. International Journal of Accounting Information Systems, 3, 203-36.
9.Charnes, A., Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of dcision mking uits. European Journal of Operations Research, 429-444.
10.Chen,T. J., Chang, M. H., Chen, K. H., & LIN, S. R. (2002). The boundary collation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function. Journal of Sound and Vibration, 257, 667-711.
11.Cybenko, G. (1989). Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing, 7, 279-301.
12.Davies, P. C. (1994). Design issue neural network development. Neurovest Journal , 2(5), 21-25.
13.Daniel, M. (1977). Early warning banking failure. Journal of Banking and Finance, 249-276.
14.Ding, Y., Song, X., & Zen, Y. (2008). Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications, 34, 3081-3089.
15.Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A survey of business failure with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 487–513.
16.Ederington, L. H. (1985). Classification models and bond ratings. The Financial Review , 20, 237–262.
17.Farrell, M. J. (1957). The measurement of productive efficiency,” Journal of the Royal Statistical Society, Series A, General, 120, 253-281.
18.Fanning, K. M. & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. International Journal of Intelligent Systems in Accounting, Finance & Management, 7, 21-41.
19.Gestel, T. V., Baesens, B., Suykens, J., Poel, D. V., Baestaens, D. E. & Willekens, M. (2006). Bayesian kernel based classification for financial distress detection. European Journal of Operational Research, 979–1003.
20.Genty, J. A., Newbold, P., & Whitford, D. T. (1985). Classifying bankruptcy firms with funds flow components. Journal of Accounting Research, 23, 146-160.
21.Hua, Z. S. & Zhang, B. (2006). A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. Applied Mathematics and Computation, 181(2), 1035–1048.
22.Kiang, M. Y., Kulkarni, U. R. & Tam, K. Y. (1995). Self-organizing map network as an interactive clustering tool — An application to group technology. Decision Support Systems, 15, 351-374.
23.Lacher, R. C., Pamela, K. C., Sharma, S. C., & Fant, L. F. (1995). A neural network for classifying the financial health of a firm. European Journal of Operational Research, 53–63.
24.Lau, A. H. (1987). A five-state financial distress prediction model. Journal of Accounting Research, 25, 127-138.
25.Leonard, K. J. (1994). Detecting credit card fraud using expert systems. Computers and Industrial Engineering, 25, 103–106.
26.Liang, L., & Wu, D. (2005). An application of pattern recognition on scoring Chinese corporations financial conditions based on back-propagation neural network. Computer and Operations Research, 32(5), 1115-1129.
27.Meyer, P. A. & Pifer, H. (1970). Prediction of bank failures. The Journal of Finance, 25, 838-868.
28.Ng, G. S., Quek, C., & Jiang, H. (2008). FCMAC-EWS: A bank failure early warning system based on a novel localized pattern learning and semantically associative fuzzy neural network. Expert Systems with Applications, 34, 989-1003.
29.Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 109-131.
30.Pantalone, C. & Platt, M. B. (1987). Predicting commercial bank failure since deregulation. New England Economic Review, 37–47.
31.Poel, D. V. & Coussement, K. (2008). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert System with Applications, 34, 313-327.
32.Prinzie, A. & Dirk Van den Poel. (2008). Random forests for multiclass classification: Random multinomial logit. Expert Systems with Applications, 34(3) , 1721-1732.
33.Rumelhart, D. E., & McClell, J. L. (1986). Parallel distributed processing. The MIT Press, (1), Cambridge, MA.,1986.
34.Roberts, R. (1996). A ratio model for discriminant analysis using linear programming. European Journal of Operational Research, 94, 112-121.
35.Shin, K. S. & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 321–328.
36.Sueyoshi, T. (2004). Mixed integer programming approach of extended dea–discriminant analysis. European Journal of Operational Research, 152, 45-55.
37.Swiniarski, R. W. & Skowron, A. (2003). Rough set methods in feature selection and recognition. Pattern Recognition Letters, 24, 833-849.
38.Tam, K. Y. & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank failure prediction. Management Science, 38, 926-947.
39.Tay, E. H. & Shen, L. (2002). Economic and financial prediction using rough sets model. Computing, Artificial Intelligence and Information Technology , 141, 641-659.
40.Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
41.Vailaya, A., Jain, A., & Zhang, H. J. (1998). On image classification: city images vs. landscapes. Pattern Recognition, 31, 1921-1935.
42.Walczak, B. & Massart, D. L. (1999). Rough set theory. Chemometrics and Intelligent Laboratory Systems, 47, 1-16.
43.Welch, O. J., Reeves, T. E., Welch, S. T. (1998). Using a genetic algorithm-based classifier system for modeling auditor decision behavior in a fraud setting. International Journal of Intelligent Systems in Accounting, Finance and Management, 7(3), 173-86.
44.Wu, D., Yang, Z., Vela, S. & Liang, L. (2007). Simultaneous analysis of production and investment performance of Canadian life and health insurance companies using data envelopment analysis. Computers and Operations Research, 34(1), 180-198.
45.Wojciech, Z. (2007). Probabilistic approach to rough sets. International Journal of Approximate Reasoning. In Press, Corrected Proof.
46.Xu, X. & Wang, Y. (2009) Financial failure prediction using efficiency as a predictor. Expert Systems with Applications,36(1), 366-373.
47.Yen, E. C. (2007). Warning signals for potential accounting in Blue Chip Companies – An application of adaptive resonance theory. Information Sciences, 177(20), 4515-4525.
48.Ziarko, W. & Yao, Y. (2007). Probabilistic rough sets: Approximations, decision-makings and applications. International Journal of Approximate Reasoning, In Press, Corrected Proof.
49.Zmijewski, M. E. (1984). Methodological issues related to the estimation distress prediction model. Journal of Accounting Research, 59-82