1.周宗南、張輝鑫、黃祥穎(2010)。應用證據理論融合不同擇股策略模型以建立最佳化投資組合。財金論文叢刊,13,59-73。
2.周建新、陳振宇、許正昇(2007)。技術分析運用於台灣公債投資績效之實證。經營管理論叢,第十三卷,第二期,23-45。3.周建新、陳振遠(2002)。濾嘴法則操作績效與台灣期貨市場效率性之研究。中華管理評論國際學報,第五卷,第四期,104-119。
4.金鐵英(2003)。台股短期走勢可被準確的預測並且從中獲利:誰說市場是有效率的。現代財務論壇,朝陽學報,第八期,25-45。
5.姚蕙芸、梁志民(2005)。空頭與多頭走勢期間台股股價與相關因素因果關係探討一以2000 及2003 年為例。企業管理學報,第六十六期,1-39。6.陳松男(1997)。現代投資學。台北:新陸圖書有限公司。
7.陳偉星(2005)。應用證據推理於供應商評選之研究。技術學刊,20(4),339-355。8.傅英芬、劉海清(2008)。台灣股市產業動能現象之研究與交易策略之應用。台南科大學報人文管理類,第二十七期,267-280。9.傅英芬、劉海清(2009)。全球股市之擇時與擇股-動能策略之應用。中華管理學報,第十卷,第二期,23-40。10.樓禎祺、何培基(2003)。股價移動平均線之理論與實證-以台灣股巿模擬投資操作為例。育達研究叢刊,第五、六期合刊,27-51。
1.Alexander, S. S., 1961, “Price movements in speculative markets: trends or random walks,” Industrial Management Review, 2, 7-26.
2.Brock, W. and Lakonishok, J. and Lebaron, B., 1992, “Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,” Journal of Finance, 47, No.5, pp.1731-1764.
3.Coutts, J. A. and Cheung, K. C., 2000, “Trading rule and stock return: some preliminary short run evidence from the Hang Seng 1985-1997,” Applied Finance Economics, 10, 579-586.
4.Fama, E. F. and Blume, M. E., 1966, “Filter Rules and Stock Market Trading,” Journal of Business, 39, 226-241.
5.Fama, E.F.,1970, “Efficient Capital Markets: A Review of Theory and Empirical Works,” Journal of Finance, vol.25,2, 383-417.
6.Gunasekaragea, A. and Power, D., 2001, “The profitability of moving average trading rules is South Asian stock markets.” Emerging Markets Review, 2, 17-33.
7.Akdag, H. and Morhtari, M., 1996, “Approximative conjunctions processing by multi-valued logic,” In: IEEE Int''l Symp on Multiple-Valued Logic (ISMVL''96). Santiago de Compostela, Spain: IEEE Computer Society, 130-135.
8.Lento, C. and Gradojevic, N., 2007, “The profitability of technical trading rules: A combined signal approach,” Journal of Applied Business Research, 23, 13-27.
9.Lento, C., 2008, “A combined signal approach to technical analysis on the S&P 500,” Journal of Business and Economics Research, 6, 41-51.
10.Lento, C., 2009, “Combined signal approach: Evidence from the Asian-Pacific equity markets,” Applied Economics Letters, 16, 749-753.
11.Parsons, S., 1994, “Qualitative approaches to applying the Dempster-Shafer theory,” Information and Decision Technologies,19, 321–337.
12.Parsons, S. and Mamdani, E. H.,1993, “Qualitative Dempster-Shafer theory,” Proceedings of the IMACS III International Workshop on Qualitative Reasoning and Decision Technologies, 471–480, CIMNE Press, Barcelona.
13.Pruitt, S. W. and White, R. E., 1988, “The CRISMA trading system: Who says technical analysis can’t beat the market?” Journal of Portfolio Management, 14, 55-58.
14.Seridi, H. and Bannay-Dupin De ST CYR, F. and Akdag, H., 1998, “Qualitative operators for dealing with uncertainty,” In: The 5th Int''l Workshop Fuzzy-Neuro Systems''98. Munich: Infix, 202-209.
15.Shafer, G., 1976, “A Mathematical Theory of Evidence,” Princeton, NJ, University Press.
16.Sweeney, R.J., 1990, “Evidence on Short-Term Trading Strategies,” Journal of Portfolio Management, vol.17, pp.20-26.
17.Van Horne, J.C. and Parker, G.G.C., 1967, “The Random-Walk Theory: An Emperical Test,” Financial Analysts Journal, vol.23, pp.87-92.
18.White, H., 2000, “A reality check for data snooping,” Econometrica, vol.68, pp.1097-1126.