|
戴 , 2001, 樟芝菌絲體與子實體對四氯化碳及酒精誘導之慢性及急性肝損傷之保肝功能評估, 國立中興大學 食品科學系 碩士論文
黃, 2011, 重組樟芝穀胱甘肽依賴型甲醛脫氫酶之生化特性分析及蛋白質硫基榖胱甘肽化與亞硝醯基化作用調節, 國立海洋大學 生物科技研究所 博士論文
Anthony, C. (1986). Bacterial oxidation of methane and methanol. Adv Microb Physiol 27, 113-210.
Arfman, N., de Vries, K.J., Moezelaar, H.R., Attwood, M.M., Robinson, G.K., van Geel, M., and Dijkhuizen, L. (1992a). Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains. Arch Microbiol 157, 272-278.
Arfman, N., Dijkhuizen, L., Kirchhof, G., Ludwig, W., Schleifer, K.H., Bulygina, E.S., Chumakov, K.M., Govorukhina, N.I., Trotsenko, Y.A., White, D., et al. (1992b). Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 42, 439-445.
Arfman, N., Hektor, H.J., Bystrykh, L.V., Govorukhina, N.I., Dijkhuizen, L., and Frank, J. (1997). Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus. Eur J Biochem 244, 426-433.
Arfman, N., Watling, E.M., Clement, W., van Oosterwijk, R.J., de Vries, G.E., Harder, W., Attwood, M.M., and Dijkhuizen, L. (1989). Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Arch Microbiol 152, 280-288.
Barceloux, D.G., Bond, G.R., Krenzelok, E.P., Cooper, H., and Vale, J.A. (2002). American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol 40, 415-446.
Chistoserdova L., Vorholt J.A., Thauer R.K., Lidstrom M.E. (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281, 99–102.
Chistoserdova L., Chen S.W., Lapidus A., Lidstrom M.E. (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185, 2980–2987.
Chistoserdova L., Kalyuzhnaya M.G., Lidstrom M.E. (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63, 477–499.
Conway, T., and Ingram, L.O. (1989). Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae. J Bacteriol 171, 3754-3759.
Conway, T., Sewell, G.W., Osman, Y.A., and Ingram, L.O. (1987). Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol 169, 2591-2597.
Corpe, W. A., and Rheem, S. (1989). Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62,243-250.
de Jong, G.A., Caldeira, J., Sun, J., Jongejan, J.A., de Vries, S., Loehr, T.M., Moura, I., Moura, J.J., and Duine, J.A. (1995). Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni. Biochemistry-Us 34, 9451-9458.
de Vries, G.E., Arfman, N., Terpstra, P., and Dijkhuizen, L. (1992). Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. J Bacteriol 174, 5346-5353.
Diehl A. M.(2002). Liver disease in a lcohol a busers: clinical perspective. Alcohol 27, 7-11.
Dorokhov, Y.L., Komarova, T.V., Petrunia, I.V., Kosorukov, V.S., Zinovkin, R.A., Shindyapina, A.V., Frolova, O.Y., and Gleba, Y.Y. (2012). Methanol May Function as a Cross-Kingdom Signal. Plos One 7.
Duine, J.A., Frank, J., and Berkhout, M.P. (1984). NAD-dependent, PQQ-containing methanol dehydrogenase: a bacterial dehydrogenase in a multienzyme complex. FEBS Lett 168, 217-221.
Duine, J.A., Frank, J., and Westerling, J. (1978). Purification and properties of methanol dehydrogenase from Hyphomicrobium x. Biochimica et biophysica acta 524, 277-287.
Eisenstein, A.B. (1982). Nutritional and metabolic effects of alcohol. J Am Diet Assoc 81, 247-251.
Harder, W. and Veenhuis, M. (1989) Metabolism of one-carbon compounds, in the yeast. Academic Press, London. 3, 289-316,
Hisiao, G., Shen, M.Y., Lin, K.H., Lan, M.H., Wu, L.Y., Chou, D.S., Lin, C.H., Su, C.H., and Sheu, J.R. (2003). Antioxidative and hepatoprotective effects of Antrodia camphorata extract. Journal of agricultural and food chemistry 51, 3302-3308.
Hsu, Y.L., P.L. Kuo, C.Y. Cho, W.C. Ni, T.F. Tzeng, L.T Ng, Y.H. Kuo, and C.C. Lin. 2007. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway. Food Chem Toxicol. 45,1249-57.
Jornvall, H., Persson, M., and Jeffery, J. (1981). Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type. Proc Natl Acad Sci U S A 78, 4226-4230.
Kato, S., Alderman, J., and Lieber, C.S. (1987). Respective roles of the microsomal ethanol oxidizing system and catalase in ethanol metabolism by deermice lacking alcohol dehydrogenase. Arch Biochem Biophys 254, 586-591.
Lund, A. (1948). Metabolism of methanol and formic acid in rabbits. Acta Pharmacol Toxicol (Copenh) 4, 99-107.
Mizuno, M., Morimoto, M., Minato, K., and Tsuchida, H. (1998). Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 62, 434-437.
Morgan M.Y., Sherlock S.(1977) Sex-related differences among 100 patients with alcoholic liver disease. Br Med J 1, 939-941.
Neijssel, O.M. (1987). PQQ-linked enzymes in enteric bacteria. Microbiological sciences 4, 87-90.
Obendorf, R. L., Koch, J. L., Goreki, R. J., Amable, R. A. and Aveni, M. T.( 1990). Methanol accumulation in maturing seeds. J. Exp. Bot. 41,489-495.
Reid, M.F., and Fewson, C.A. (1994). Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20, 13-56.
Shen, Y.C., Wang, Y.H., Chou, Y.C., Chen, C.F., Lin, L.C., Chang, T.T., Tien, J.H., and Chou, C.J. (2004). Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta medica 70, 310-314.
Sheehan, M.C., Bailey, C.J., Dowds, B.C., and McConnell, D.J. (1988). A new alcohol dehydrogenase, reactive towards methanol, from Bacillus stearothermophilus. The Biochemical journal 252, 661-666.
Takagi, T., Alderman, J., and Lieber, C.S. (1985). In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice. Alcohol 2, 9-12.
Tsai, Z.T., and S.L. Liaw. (1985). The use and the effect of Ganoderma. Sheng-Yun Publisher Inc. Taichung, Taiwan : 116-117.
Vonck, J., Arfman, N., De Vries, G.E., Van Beeumen, J., Van Bruggen, E.F., and Dijkhuizen, L. (1991). Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. J Biol Chem 266, 3949-3954.
Vorholt, J.A. (2002). Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Archives of Microbiology 178, 239-249.
Williamson, V.M., and Paquin, C.E. (1987). Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol Gen Genet 209, 374-381.
Youngleson, J.S., Jones, W.A., Jones, D.T., and Woods, D.R. (1989). Molecular analysis and nucleotide sequence of the adh1 gene encoding an NADPH-dependent butanol dehydrogenase in the Gram-positive anaerobe Clostridium acetobutylicum. Gene 78, 355-364.
Zang, M and Su, C. H.,”Ganderma camphoratum, a new taxon in genus Ganoderma from Taiwan.” China. Acta Bot. Yunnanica, Vol. 12, pp. 395-396 (1990).
|