1.陳則皓,2018,”台灣不同程度PM2.5污染事件區域性來源之模擬分析”,國立雲林科技大學環境與安全衛生工程系碩士論文。2.蔡漢霓,2014,”巴西蘑菇萃取物抗氧化活性之研究”, 國立成功大學醫學檢驗生物技術學系碩士論文碩士論文。3.沈愛英、文英, 系215151苏州大学生物 & 学214036无锡轻工大”复合酶法提取姬松茸子实体多糖的研究”,食用菌 7–9 (2001)。
4.陈慧斌、彭彪、王梅英,宁德师范高等专科学校生物系福建、福建农林大学食品科学学院福建. ”姬松茸多糖的提取方法及其药理作用研究进展”宁德师范学院学报(自然科学版)130–133 (2008)。
5.沈愛英、谷文英,”姬松茸子實體水溶性多醣提取工藝的研究”,中國食用菌 21, 15–17 (2001)。
6.陳復生、張雪、錢向明,2005,食品超高壓加工技術,化學工業出版社,台北。
7.林雨欣等編著,水產食品中超高壓加工技術的應用與發展現況,海大漁推 17–32 (2017)。
8.Burr, M. J. & Zhang, Y. Source apportionment of fine particulate matter over the Eastern U.S. Part I: source sensitivity simulations using CMAQ with the Brute Force method. Atmospheric Pollution Research 2, 300–317 (2011).
9.F. Pueschel, R., C. Van Valin, C., C. Castillo, R., A. Kadlecek, J. & Ganor, E. Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds. Journal of Applied Meteorology 25, (1987).
10.Fang, G.-C. & Chang, S.-C. Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008. Atmospheric Research 98, 368–377 (2010).
11.Kuo, P.-H. et al. Risk assessment of mortality for all-cause, ischemic heart disease, cardiopulmonary disease, and lung cancer due to the operation of the world’s largest coal-fired power plant. Atmospheric Environment 96, 117–124 (2014).
12.Tsimpidi, A. P., Trail, M., Hu, Y., Nenes, A. & Russell, A. G. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. J Air Waste Manag Assoc 62, 1150–1165 (2012).
13.Koo, B., Wilson, G. M., Morris, R. E., Dunker, A. M. & Yarwood, G. Comparison of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air Quality Model. Environ. Sci. Technol. 43, 6669–6675 (2009).
14.Chang, S.-Y. The Characteristics of PM2.5 and Its Chemical Compositions between Different Prevailing Wind Patterns in Guangzhou. Aerosol and Air Quality Research (2013). doi:10.4209/aaqr.2012.09.0253
15.Fan, Q. et al. Diagnostic Analysis of the Sulfate Aerosol Pollution in Spring over Pearl River Delta, China. Aerosol and Air Quality Research 15, (2015).
16.Tseng, C.-Y. et al. Potent In Vitro Protection Against PM2.5-Caused ROS Generation and Vascular Permeability by Long-Term Pretreatment with Ganoderma tsugae. Am. J. Chin. Med. 44, 355–376 (2016).
17.Chuang, M.-T., Lee, C.-T. & Hsu, H.-C. Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method. Journal of Environmental Management 227, 10–22 (2018).
18.Hsu, C.-H. & Cheng, F.-Y. Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmospheric Environment 144, 397–408 (2016).
19.Ansari, M. & Ehrampoush, M. H. Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environmental Research 170, 141–150 (2019).
20.周政泰,2018,”噴漆懸浮微粒對人體肺支氣管上皮細胞BEAS-2B之細胞毒性與COPD相關性之研究”,國立虎尾科技大學生物科技系研究所碩士論文。21.Boyes, W. K., Chen, R., Chen, C. & Yokel, R. A. The neurotoxic potential of engineered nanomaterials. Neurotoxicology 33, 902–910 (2012).
22.Martinelli, N., Olivieri, O. & Girelli, D. Air particulate matter and cardiovascular disease: a narrative review. Eur. J. Intern. Med. 24, 295–302 (2013).
23.Feng, S., Gao, D., Liao, F., Zhou, F. & Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 128, 67–74 (2016).
24.Kelly, F. J. & Fussell, J. C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment 60, 504–526 (2012).
25.Miyata, R. & van Eeden, S. F. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol. Appl. Pharmacol. 257, 209–226 (2011).
26.Wu, Y.-P. et al. Activating transcription factor 3 represses cigarette smoke-induced IL6 and IL8 expression via suppressing NF-κB activation. Toxicol. Lett. 270, 17–24 (2017).
27.Tedgui, A. & Mallat, Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86, 515–581 (2006).
28.Silva, B. S. A. et al. Severity of COPD and its relationship with IL-10. Cytokine 106, 95–100 (2018).
29.孙哲琳等編著,2016,PM 2.5水溶性和有机组分对肺上皮细胞损伤及COPD相关基因和蛋白表达影响。
30.Langen, R. C. J., Korn, S. H. & Wouters, E. F. M. ROS in the local and systemic pathogenesis of COPD. Free Radic. Biol. Med. 35, 226–235 (2003).
31.Reis, A. J. et al. COPD exacerbations: management and hospital discharge. Pulmonology 24, 345–350 (2018).
32.Cassee, F. R. et al. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch. Toxicol. 76, 277–286 (2002).
33.Carroll, T. P. et al. Alpha-1 Antitrypsin Deficiency — A Missed Opportunity in COPD? COPD Clinical Perspectives (2014). doi:10.5772/58602
34.Brode, S. K., Ling, S. C. & Chapman, K. R. Alpha-1 antitrypsin deficiency: a commonly overlooked cause of lung disease. CMAJ 184, 1365–1371 (2012).
35.McCarthy, C., Reeves, E. P. & McElvaney, N. G. The Role of Neutrophils in Alpha-1 Antitrypsin Deficiency. Ann Am Thorac Soc 13 Suppl 4, S297-304 (2016).
36.Li, Z. et al. Oxidized α-1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L388-400 (2009).
37.Ueda, M., Mashiba, S. & Uchida, K. Evaluation of oxidized alpha-1-antitrypsin in blood as an oxidative stress marker using anti-oxidative alpha1-AT monoclonal antibody. Clin. Chim. Acta 317, 125–131 (2002).
38.Escribano, A. et al. Decreased glutathione and low catalase activity contribute to oxidative stress in children with α-1 antitrypsin deficiency. Thorax 70, 82–83 (2015).
39.Yawn, B. P. Differential assessment and management of asthma vs chronic obstructive pulmonary disease. Medscape J Med 11, 20 (2009).
40.Deng, Q., Deng, L., Miao, Y., Guo, X. & Li, Y. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ. Res. 169, 237–245 (2019).
41.Liu, Y. et al. Researches on the Co-relations between Serum α1-antitrypsin Level and Airway Inflammation, and Pulmonary Function in COPD Patients During the Stationary Phases. JOURNAL OF CAPITAL UNIVERSITY OF MEDICAL SCIENCES 27, 35–37 (2006).
42.Zhu, Z. et al. Inhibition of nuclear thioredoxin aggregation attenuates PM2.5-induced NF-κB activation and pro-inflammatory responses. Free Radic. Biol. Med. 130, 206–214 (2019).
43.葛玉、肖紅、張欣、段玉峰,真菌多糖的研究开发现状,食品研究与开发 26, 23–25 (2005)。
44.王斌、连宾,食药用真菌多糖的研究与应用,食品与机械 6, 95–100 (2005)。
45.吕长武、付永前、陈恒雷、吕杰、曾宪贤,食(药)用真菌多糖研究进展,化学与生物工程 5–7 (2005)。
46.Pang, X. et al. Purification, characterization and biological activity on hepatocytes of a polysaccharide from Flammulina velutipes mycelium. Carbohydrate Polymers 70, 291–297 (2007).
47.叶竹秋、黄谚谚,巴西蘑菇多糖提取方法的研究,食用菌 22, 7–9 (2000)。
48.管军军、张春霞,江南大学食品学院江苏 & 浦江前吴中学浙江,多糖的研究,32–34 (2003)。
49.Li, W. et al. Physicochemical properties of polysaccharides from Lentinus edodes under high pressure cooking treatment and its enhanced anticancer effects. International Journal of Biological Macromolecules 115, 994–1001 (2018).
50.Naik, L. Application of High Pressure Processing Technology for Dairy Food Preservation - Future Perspective: A Review. Journal of Animal Production Advances 3, 232–241 (2013).
51.Hendrickx, M., Ludikhuyze, L., Van den Broeck, I. & Weemaes, C. Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology 9, 197–203 (1998).
52.Eisenmenger, M. J. & Reyes-De-Corcuera, J. I. High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology 45, 331–347 (2009).
53.Alexandre, E. M. C. et al. High-pressure assisted extraction of bioactive compounds from industrial fermented fig by-product. J Food Sci Technol 54, 2519–2531 (2017).
54.Mizuno, T. Bioactive Biomolecules of Mushrooms: Food Function and Medicinal Effect of Mushroom Fungi. Food Reviews International - FOOD REV INT 11, 5–21 (1995).
55.水野卓、川和正允、賴慶亮,1997,菇類的化學,國立編譯館。
56.Mizuno, T. et al. Antitumor Activity and Some Properties of Water-insoluble Hetero-glycans from “Himematsutake,” the Fruiting Body of Agaricus blazei Murill. Agricultural and Biological Chemistry 54, 2897–2905 (1990).
57.Kawagishi, H. et al. Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry 27, 2777–2779 (1988).
58.Ito, N., Fukushima, S. & Tsuda, H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit. Rev. Toxicol. 15, 109–150 (1985).
59.Mizuno, M., Morimoto, M., Minato, K. & Tsuchida, H. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci. Biotechnol. Biochem. 62, 434–437 (1998).
60.Du, B., Zhu, F. & Xu, B. An insight into the anti-inflammatory properties of edible and medicinal mushrooms. Journal of Functional Foods 47, 334–342 (2018).
61.王伯徹、陳啟楨、華傑,食藥用菇類的培養與應用,食品工業發展研究所,18–57 (1998)。
62.陳啟楨,菇類二次代謝物及其利用,食品工業,(1999)。
63.Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nat. Rev. Cancer 3, 276–285 (2003).
64.Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).
65.Kehrer, J. P. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23, 21–48 (1993).
66.Halliwell, B., Gutteridge, J. M. & Cross, C. E. Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119, 598–620 (1992).
67.Melo Cavalcante, A. A. et al. Mutagenicity, antioxidant potential, and antimutagenic activity against hydrogen peroxide of cashew (Anacardium occidentale) apple juice and cajuina. Environ. Mol. Mutagen. 41, 360–369 (2003).
68.Babior, B. M., Kipnes, R. S. & Curnutte, J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 52, 741–744 (1973).
69.Temple, N. J. Antioxidants and disease: More questions than answers. Nutrition Research 20, 449–459 (2000).
70.Boveris, A., Oshino, N. & Chance, B. The cellular production of hydrogen peroxide. Biochem. J. 128, 617–630 (1972).
71.Loschen, G., Azzi, A., Richter, C. & Flohé, L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42, 68–72 (1974).
72.Fridovich, I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 245, 4053–4057 (1970).
73.Weiss, S. J., King, G. W. & LoBuglio, A. F. Evidence for hydroxyl radical generation by human Monocytes. J Clin Invest 60, 370–373 (1977).
74.Davison, A., Tibbits, G., Shi, Z. G. & Moon, J. Active oxygen in neuromuscular disorders. Mol. Cell. Biochem. 84, 199–216 (1988).
75.Cerutti, P. A. & Trump, B. F. Inflammation and oxidative stress in carcinogenesis. Cancer Cells 3, 1–7 (1991).
76.Harris, E. D. Regulation of antioxidant enzymes. FASEB J. 6, 2675–2683 (1992).
77.劉桂萍,1999,薏苡殼甲醇萃取物清除自由基成分之分離與純化,國立臺灣大學食品科技研究所碩士論文。78.Pokorný, J. Natural antioxidants for food use. Trends in Food Science & Technology 2, 223–227 (1991).
79.Dziezak, J. D. Preservatives: antioxidant. Food Technology 40, 94–102
80.拱玉郎. 天然抗氧化劑發展近況. 食品工業 29, 29–37 (1997).
81.Pryor, W. Free Radicals in Biology. (Elsevier, 2012).
82.Min, D. B., Smouse, T. H. & Chang, S. S. Flavor Chemistry of Lipid Foods. (The American Oil Chemists Society, 1989).
83.Yan, J. et al. Industrial PM2.5 cause pulmonary adverse effect through RhoA/ROCK pathway. Sci. Total Environ. 599–600, 1658–1666 (2017).
84.張原嘉,2006,重金屬鎘(Cd)對巴西蘑菇的生長影響與巴西蘑菇多醣含鎘量的研究,南台科技大學生物科技系碩士論文。85.DuBois, M., Gilles K. A., E., Hamilton, J. K., A. J. Rebers, P. & Smith, F. Calorimetric Dubois Method for Determination of Sugar and Related Substances. Analytical Chemistry 28, 350–356 (2002).
86.Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31, 426–428 (1959).
87.Grela, E., Kozłowska, J. & Grabowiecka, A. Current methodology of MTT assay in bacteria - A review. Acta Histochem. 120, 303–311 (2018).
88.Pascua-Maestro, R. et al. The MTT-formazan assay: Complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochem. 120, 179–186 (2018).
89.Grivennikova, V. G., Kareyeva, A. V. & Vinogradov, A. D. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Redox Biol 17, 192–199 (2018).
90.Oparka, M. et al. Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods 109, 3–11 (2016).
91.Sher Ahmed FT et al. Transepithelial Electrical Resistance on Cell Cultures for in vitro Toxicity Testing of Water Samples. LiveSense 1 (2013).
92.Lo, C. M., Keese, C. R. & Giaever, I. Cell-substrate contact: another factor may influence transepithelial electrical resistance of cell layers cultured on permeable filters. Exp. Cell Res. 250, 576–580 (1999).
93.Jia, S. et al. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill. International Journal of Biological Macromolecules 62, 66–69 (2013).
94.Wu, S. et al. Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei Murrill. Carbohydrate Polymers 103, 414–417 (2014).
95.蔡惠利,2004,巴西蘑菇、茶樹菇、牛肝菌和雞腿菇之呈味與抗氧化性質,國立中興大學食品科學系碩士論文。96.Lotito, S. B. & Fraga, C. G. (+)-Catechin prevents human plasma oxidation. Free Radic. Biol. Med. 24, 435–441 (1998).
97.何怡慧. 2017年台灣細懸浮微粒(PM2.5) 污染來源推估及化學成分特性變化. (2019).
98.Pérez, S., Pereda, J., Sabater, L. & Sastre, J. Redox signaling in acute pancreatitis. Redox Biol 5, 1–14 (2015).
99.Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. & Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40 (2006).
100.Tseng, C.-Y. et al. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes. PLoS ONE 10, e0131911 (2015).
101.Møller, P. et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res 762, 133–166 (2014).
102.Li, R. et al. Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats. Chem. Res. Toxicol. 28, 408–418 (2015).