|
[1]NSK Europe Ltd, 2019, “Pitting”, https://www.nskeurope.com. [2]S. Li, A. Kahraman, 2013, “A physics-based model to predict micro-pitting lives of lubricated point contacts”, International Journal of Fatigue, Vol. 47, pp.205-215. [3]P. Rycerz, A. Olver, A. Kadiric, 2017, “Propagation of surface initiated rolling contact fatigue cracks in bearing steel”, International Journal of Fatigue, Vol.97, pp.29-38. [4]H. Cen, A. Morina, A. Neville, 2018, “Effect of slide to roll ratio on the micropitting behaviour in rolling-sliding contacts lubricated with zddp- containing lubricants”, Tribology International, Vol. 122, pp.210-217. [5]G. E. Morales-Espejel, P. Rycerz, A. Kadiric, 2018, “Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear”, Wear, Vol. 398-399, pp.99-115. [6]H. Winter, T. Weiss, 1981, “Some factors influencing the pitting, micro- pitting (frosted areas) and slow speed wear of surface hardened gears”, ASME, Vol.103, lssue2, pp.499-505. [7]ASTM D5183-05, 2016, “Standard test method for determination of the coefficient of friction of lubricants using the four-ball wear test machine”, ASTM International. [8]F. Cabanettes, B. G. Rosén, 2014, “Topography changes observation during running-in of rolling contacts”, Wear, Vol.315, pp.78-86. [9]C. Minfray, J. M. Martin, M. I. D. Barros, T. L. Mogne, R. Kersting, and B. Hagenhoff, 2004, “Chemistry of zddp tribofilm by tof-sims”, Tribology Letters, Vol.17, lssue3, pp.351-357. [10]M. A. Nicholls, G. M. Bancroft, P. R. Norton,, M. Kasrai, G. D. Stasio, B. H. Frazer, L. M. Wiesec, 2004, “Chemomechanical properties of antiwear films using x-ray absorption microscopy and nanoindentation techniques”, Tribology Letters, Vol.17, lssue2, pp.245-259. [11]A. Sethuramiah, R. Kumar, 2016, “Boundary lubrication mechanisms and modeling”, Modeling of Chemical Wear. [12]K. J. Kubiak, T. G. Mathia, M. Bigerelle, 2012, “Influence of roughness on zddp tribofilm formation in boundary lubricated fretting”, Tribology Materials Surfaces & Interfaces, Vol.6, pp.182-188. [13]C.-J. Hsu, A. Stratmann, A. Rosenkranz, C. Gachot, 2017, “Enhanced growth of zddp-based tribofilms on laser-interference patterned cylinder roller bearings”, Lubricants, Vol.5, Issue.39. [14]G. M. Bancroft, M. Kasrai, M. Fuller, Z. Yin, 1997, “Mechanisms of tribochemical film formation: stability of tribo-and thermally-generated zddp films”, Tribology Letters, Vol.3, Issue 1, pp.47-51. [15]N. N. Gosvami, J. A. Bares, F. Mangolini, A. R. Konicek, D. G. Yablon, D. G. Yablon, 2015, “Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts”, Lubricants, Vol.348, Issue 6230, pp.102-106. [16]C. Gachot, C. Hsu, S. Suárez, P. Grützmacher, A. Rosenkranz, A. Stratmann, G. Jacobs, 2016, “Microstructural and chemical characterization of the tribolayer formation in highly loaded cylindrical roller thrust bearings”, Lubricants, Vol.4, Issue 19. [17]R. Michalczewski, M. Kalbarczyk, M. Michalak, W. Piekoszewski, M. Szczerek, W. Tuszynski, J. Wulczynski, 2013, “New scuffing test methods for the determination of the scuffing resistance of coated gears”, Tribology - Fundamentals and Advancements, Chapter 6. [18]R. Mourhatch, P. B. Aswath, 2009, “Nanoscale properties of tribofilms formed with zinc dialkyl dithiophosphate (zddp) under extreme pressure condition”, Journal of Nanoscience and Nanotechnology, Vol.9, pp.2682-2691. [19]L. Taylor, A. Dratva, H. A. Spikes, 2000, “Friction and wear behavior of zinc dialkyldithiophosphate additive”, Tribology Transactions, Vol. 43, pp.469-479. [20]L. J. Taylor, H. A. Spikes, 2003, “Friction-enhancing properties of zddp antiwear additive: part i—friction and morphology of zddp reaction films”, Tribology Transactions, Vol. 46, Issue.3, pp.303-309. [21]J. Zhang, H. Spikes, 2016, “On the mechanism of zddp antiwear film formation”, Tribology Letters, Vol.63:24. [22]A. N. Farhanah, S. Syahrullail, 2016, “Evaluation of lubrication performance of rbd palm stearin and its formulation under different applied loads”, Jurnal Tribologi, Vol.10, pp.1-15. [23]A. Ghanbarzadeh, P. Parsaeian, A. Morina, M. C. T. Wilson, M. C. P. van Eijk, I. Nedelcu, D. Dowson, A. Neville, 2016, “A semi-deterministic wear model considering the effect of zinc dialkyl dithiophosphate tribofilm”, Tribology Letters, Vol.61:12. [24]A. I. Echin, G. T. Novosartov, E. A. Popova, 1981, “Hygroscopicity of synthetic oils”, Chemistry and Technology of Fuels and Oils, Vol.17, lssue 4, pp.198-200. [25]P. Parsaeian, A. Ghanbarzadeh, M. Wilson, M. C. P. Van Eijk, I. Nedelcu, D. Dowson, A. Neville, A. Morina, 2016, “An experimental and analytical study of the effect of water and its tribochemistry on the tribocorrosive wear of boundary lubricated systems with zddp-containing oil”, Wear, Vol.358-359, pp.23-31. [26]I. Nedelcu, E. Piras, A. Rossib, H. R. Pasaribua, 2012, “XPS analysis on the influence of water on the evolution of zinc dialkyldithiophosphate– derived reaction layer in lubricated rolling contacts”, Surface and Interface Analysis, Vol.44, pp.1219-1224. [27]M. Weibring, L. Gondecki, P. Tenberge, 2019, “Simulation of fatigue failure on tooth flanks in consideration of pitting initiation and growth”, Tribology International, Vol. 131, pp.299-307. [28]L. Q. Chen, 1993, “Influence of contact temperature on contact fatigue failure forms: part 2—the test and analysis”, ASME, Vol. 115, pp.471-475. [29]M. N. Kotzalas, T. A. Harris, 2001, “Fatigue failure progression in ball bearings”, ASME Journal of Tribology, Vol. 123, pp.238-242. [30]“Memorandum on definitions and, symbols and units”, Proc I Mech E, 1957, London; 4. [31]Y. Matsuzaki, K. Yagi, J. Sugimura, 2017, “In-situ fast and long observation system for friction surfaces during scuffing of steel”, Wear, Vol.386-387, pp.165-172. [32]R. Stribeck, 1901, “Article on the evaluation of ball-bearings”, Zeitschrift Des Vereines Deutscher Ingenieure, Vol. 14, pp.1421-1422. [33]A. Beerbower, 1972, “Boundary Lubrication”, Office of the Chief of Research and Development, Contract No. DAHC19-69-C-0033. [34]H. Heinrich, 1881, “Uber die beruhrung fester elastischer korper”, Journal für die reine und angewandte. Mathematik, Issue 92, pp. 156-171. [35]K. L. Johnson, K. Kendall, A. D. Roberts, 1971, “Surface energy and the contact of elastic solids”, Proc. R. Soc. Lond, A324, pp.301-313. [36]B. V. Derjaguin, V. M Muller, Y. P Toporov, 2017, “Effect of contact deformations on the adhesion of elastic solids”, Journal of Colloid and Interface Science, Vol. 53, Issue2, pp.314-326. [37]M. Masjedi, M. M. Khonsari, 2015, “On the effect of surface roughness in point-contact ehl: formulas for film thickness and asperity load”, Wear, Vol. 386-387, pp.165-172. [38]J. L. Liou, Y. H. Sun, J. F. Lin, Y. L. Chiu, Y. C. Hulang, 2012, “Fractal theory applied to evaluate the tribological performances of two greases demonstrated in four-ball tests”, Journal of Tribology, Vol. 134, Issue3, Article number.031801. [39]“Media Cybernetics Inc”, http://www.mediacy.com/。
|